ترغب بنشر مسار تعليمي؟ اضغط هنا

Hairy AdS black holes with a toroidal horizon in 4D Einstein-nonlinear $sigma $-model system

71   0   0.0 ( 0 )
 نشر من قبل Alex Giacomini
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

An exact hairy asymptotically locally AdS black hole solution with a flat horizon in the Einstein-nonlinear sigma model system in (3+1) dimensions is constructed. The ansatz for the nonlinear $SU(2)$ field is regular everywhere and depends explicitly on Killing coordinates, but in such a way that its energy-momentum tensor is compatible with a metric with Killing fields. The solution is characterized by a discrete parameter which has neither topological nor Noether charge associated with it and therefore represents a hair. A $U(1)$ gauge field interacting with Einstein gravity can also be included. The thermodynamics is analyzed. Interestingly, the hairy black hole is always thermodynamically favored with respect to the corresponding black hole with vanishing Pionic field.

قيم البحث

اقرأ أيضاً

We consider a class of ansatze for the construction of exact solutions of the Einstein-nonlinear $sigma$-model system with an arbitrary cosmological constant in (3+1) dimensions. Exploiting a geometric interplay between the $SU(2)$ field and Killing vectors of the spacetime reduces the matter field equations to a single scalar equation (identically satisfied in some cases) and simultaneously simplifies Einsteins equations. This is then exemplified over various classes of spacetimes, which allows us to construct stationary black holes with a NUT parameter and uniform black strings, as well as time-dependent solutions such as Robinson-Trautman and Kundt spacetimes, Vaidya-type radiating black holes and certain Bianchi~IX cosmologies. In addition to new solutions, some previously known ones are rederived in a more systematic way.
105 - Burkhard Kleihaus , 2015
In the presence of a complex scalar field scalar-tensor theory allows for scalarized rotating hairy black holes. We exhibit the domain of existence for these scalarized black holes, which is bounded by scalarized rotating boson stars and ordinary hai ry black holes. We discuss the global properties of these solutions. Like their counterparts in general relativity, their angular momentum may exceed the Kerr bound, and their ergosurfaces may consist of a sphere and a ring, i.e., form an ergo-Saturn.
We consider a gravitating system consisting of a scalar field minimally coupled to gravity with a self-interacting potential and an U(1) electromagnetic field. Solving the coupled Einstein-Maxwell-scalar system we find exact hairy charged black hole solutions with the scalar field regular everywhere. We go to the zero temperature limit and we study the effect of the scalar field on the near horizon geometry of an extremal black hole. We find that except a critical value of the charge of the black hole there is also a critical value of the charge of the scalar field beyond of which the extremal black hole is destabilized. We study the thermodynamics of these solutions and we find that if the space is flat then at low temperature the Reissner-Nordstrom black hole is thermodynamically preferred, while if the space is AdS the hairy charged black hole is thermodynamically preferred at low temperature.
In this work we consider black hole solutions to Einstein theory coupled to a nonlinear power-law electromagnetic field with a fixed exponent value. We study the extended phase space thermodynamics in canonical and grand canonical ensembles where the varying cosmological constant plays the role of an effective thermodynamic pressure. We examine thermodynamical phase transitions in such black hols and find that both first and second order phase transitions can occur in the canonical ensemble, while for the grand canonical ensemble the Hawking-Page and second order phase transitions are allowed.
We investigate whether supertranslation symmetry may appear in a scenario that involves black holes in AdS space. The framework we consider is massive 3D gravity, which admits a rich black hole phase space, including stationary AdS black holes with s oftly decaying hair. We consider a set of asymptotic conditions that permits such decaying near the boundary, and which, in addition to the local conformal symmetry, is preserved by an extra local current. The corresponding algebra of diffeomorphisms consists of two copies of Virasoro algebra in semi-direct sum with an infinite-dimensional Abelian ideal. We then reorient the analysis to the near horizon region, where infinite-dimensional symmetries also appear. The supertranslation symmetry at the horizon yields an infinite set of non-trivial charges, which we explicitly compute. The zero-mode of these charges correctly reproduces the black hole entropy. In contrast to Einstein gravity, in the higher-derivative theory subleading terms in the near horizon expansion contribute to the near horizon charges. Such terms happen to capture the higher-curvature corrections to the Bekenstein area law.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا