ﻻ يوجد ملخص باللغة العربية
We present and analyze a protocol in which polaritons in a noncoplanar optical cavity form fractional quantum Hall states. We model the formation of these states and present techniques for subsequently creating anyons and measuring their fractional exchange statistics. In this protocol, we use a rapid adiabatic passage scheme to sequentially add polaritons to the system, such that the system is coherently driven from $n$- to $(n+1)$-particle Laughlin states. Quasiholes are created by slowly moving local pinning potentials in from outside the cloud. They are braided by dragging the pinning centers around one another, and the resulting phases are measured interferometrically. The most technically challenging issue with implementing our procedure is that maintaining adiabaticity and coherence requires that the two-particle interaction energy $V_0$ be sufficiently large compared to the single-polariton decay rate $gamma$, $V_0 /gamma gg 10 N^2 ln N$, where $N$ is the number of particles in the target state. While this condition is very demanding for present-day experiments where $V_0 /gammasim 50$, our protocol presents a significant advance over the existing protocols in the literature.
We demonstrate the generation of coherent phonons in a quartz Bulk Acoustic Wave (BAW) resonator through the photoelastic properties of the crystal, via the coupling to a microwave cavity enhanced by a photonic lambda scheme. This is achieved by imbe
We employ the exact diagonalization method to analyze the possibility of generating strongly correlated states in two-dimensional clouds of ultracold bosonic atoms which are subjected to a geometric gauge field created by coupling two internal atomic
Electron correlation in a quantum many-body state appears as peculiar scattering behaviour at its boundary, symbolic of which is Andreev reflection at a metal-superconductor interface. Despite being fundamental in nature, dictated by the charge conse
We study incompressible ground states of bosons in a two-dimensional rotating square optical lattice. The system can be described by the Bose-Hubbard model in an effective uniform magnetic field present due to the lattice rotation. To study ground st
We report on our systematic attempts at finding local interactions for which the lowest-Landau-level projected composite-fermion wave functions are the unique zero energy ground states. For this purpose, we study in detail the simplest non-trivial sy