ﻻ يوجد ملخص باللغة العربية
We present an experimental study of nanowire transmons at zero and applied in-plane magnetic field. With Josephson non-linearities provided by the nanowires, our qubits operate at higher magnetic fields than standard transmons. Nanowire transmons exhibit coherence up to 70 mT, where the induced superconducting gap in the nanowire closes. We demonstrate that on-chip charge noise coupling to the Josephson energy plays a dominant role in the qubit dephasing. This takes the form of strongly-coupled two-level systems switching on 100 ms timescales and a more weakly coupled background producing $1/f$ noise. Several observations, including the field dependence of qubit energy relaxation and dephasing, are not fully understood, inviting further experimental investigation and theory. Using nanowires with a thinner superconducting shell will enable operation of these circuits up to 0.5 T, a regime relevant for topological quantum computation.
Exploring the properties and applications of topological quantum states is essential to better understand topological matter. Here, we theoretically study a quasi-one-dimensional topological atom array. In the low-energy regime, the atom array is equ
A merged-element transmon (MET) device, based on Si fins, is proposed and the steps to form such a FinMET are demonstrated. This new application of fin technology capitalizes on the anisotropic etch of Si(111) relative to Si(110) to define atomically
Physical implementations of large-scale quantum processors based on solid-state platforms benefit from realizations of quantum bits positioned in regular arrays. Self-assembled quantum dots are well-established as promising candidates for quantum opt
We theoretically study the levitation of a single magnetic domain nanosphere in an external static magnetic field. We show that apart from the stability provided by the mechanical rotation of the nanomagnet (as in the classical Levitron), the quantum
The Second Law of Thermodynamics states that the entropy of a closed system is non-decreasing. Discussing the Second Law in the quantum world poses new challenges and provides new opportunities, involving fundamental quantum-information-theoretic que