ﻻ يوجد ملخص باللغة العربية
Interfacial Dzyaloshinskii-Moriya interaction (iDMI) has been investigated in Co2FeAl (CFA) ultrathin films of various thicknesses (0.8 nm<tCFA<2 nm) grown on Si substrates, using Pt, W, Ir and MgO buffer or/and capping layers. Vibrating sample magnetometry revealed that magnetization at saturation (Ms) for the Pt and Ir buffered films is higher than the usual Ms of CFA due to the proximity induced magnetization (PIM) in Ir and Pt, estimated to be 19% and 27%, respectively. The presence of PIM in these materials is confirmed using x-ray resonant magnetic reflectivity. Moreover, while no PIM is induced in W, higher PIM is obtained with Pt when it is used as buffer layer rather than capping layer. Brillouin light scattering (BLS) in the Damon-Eshbach geometry has been used to investigate iDMI constants and the perpendicular anisotropy field versus the annealing temperature. The DMI sign has been found to be negative for Pt/CFA and Ir/CFA while it is positive for W/CFA. The thickness dependence of the effective iDMI constant for stacks involving Pt and W shows the existence of two regimes similarly to that of the perpendicular anisotropy constant due to the degradation of the interfaces as the CFA thickness approaches the nanometer. The surface iDMI and anisotropy constants of each stack have been determined for the thickest samples where a linear thickness dependence of the effective iDMI constant and the effective magnetization has been observed. The interface anisotropy and iDMI constants, investigated for Pt/CFA/MgO system, showed different trends with the annealing temperature. The decrease of iDMI constant with increasing annealing temperature is probably due to the electronic structure changes at the interfaces, while the increase of the interface anisotropy constant is coherent the interface quality and disorder enhancement.
The Dzyaloshinskii Moriya Interaction (DMI) at the heavy metal (HM) and ferromagnetic metal (FM) interface has been recognized as a key ingredient in spintronic applications. Here we investigate the chemical trend of DMI on the 5d band filling (5d^3~
We have characterized the strength of the interfacial Dyzaloshinskii-Moriya interaction (DMI) in ultrathin perpendicularly magnetized CoFeB/MgO films, grown on different underlayers of W, TaN, and Hf, using two experimental methods. First, we determi
Co2FeAl (CFA) ultrathin films, of various thicknesses (0.9 nm<tCFA<1.8 nm), have been grown by sputtering on Si substrates, using Ir as a buffer layer. The magnetic properties of the structures have been studied by vibrating sample magnetometry (VSM)
We report the thickness dependence of Dzyaloshinskii-Moriya interaction (DMI) and spin-orbit torques (SOTs) in PtCo(t)AlOx, studied by current-induced domain wall (DW) motion and second-harmonic experiments. From the DW motion study, a monotonous dec
The Dzyaloshinskii-Moriya interaction in ultrathin ferromagnets can result in nonreciprocal propagation of spin waves. We examine theoretically how spin wave power flow is influenced by this interaction. We show that the combination of the dipole-dip