ﻻ يوجد ملخص باللغة العربية
We study the dynamics of microscopic quantum correlations, viz., bipartite entanglement and quantum discord between nearest neighbor sites, in Ising spin chain with a periodically varying external magnetic field along the transverse direction. Quantum correlations exhibit periodic revivals with the driving cycles in the finite-size chain. The time of first revival is proportional to the system size and is inversely proportional to the maximum group velocity of Floquet quasi-particles. On the other hand, the local quantum correlations in the infinite chain may get saturated to non-zero values after a sufficiently large number of driving cycles. Moreover, we investigate the convergence of local density matrices, from which the quantum correlations under study originate, towards the final steady-state density matrices as a function of driving cycles. We find that the geometric distance, $d$, between the reduced density matrices of non-equilibrium state and steady-state obeys a power-law scaling of the form $d sim n^{-B}$, where $n$ is the number of driving cycles and $B$ is the scaling exponent. The steady-state quantum correlations are studied as a function of time period of the driving field and are marked by the presence of prominent peaks in frequency domain. The steady-state features can be further understood by probing band structures of Floquet Hamiltonian and purity of the bipartite state between nearest neighbor sites. Finally, we compare the steady-state values of the local quantum correlations with that of the canonical Gibbs ensemble and infer about their canonical ergodic properties. Moreover, we identify generic features in the ergodic properties depending upon the quantum phases of the initial state and the pathway of repeated driving that may be within the same quantum phase or across two different equilibrium phases.
We explore quantum and classical correlations along with coherence in the ground states of spin-1 Heisenberg chains, namely the one-dimensional XXZ model and the one-dimensional bilinear biquadratic model, with the techniques of density matrix renorm
We develop a flow renormalization approach for periodically-driven quantum systems, which reveals prethermal dynamical regimes and associated timescales via direct correspondence between real time and flow time behavior. In this formalism, the dynami
We provide an explanation of recent experimental results of Xue et al., where full revivals in a time-dependent quantum walk model with a periodically changing coin are found. Using methods originally developed for electric walks with a space-depende
We reveal a continuous dynamical heating transition between a prethermal and an infinite-temperature stage in a clean, chaotic periodically driven classical spin chain. The transition time is a steep exponential function of the drive frequency, showi
The anisotropic Heisenberg two-spin-1/2 model in an inhomogeneous magnetic field with both antisymmetric Dzyaloshinsky-Moriya and symmetric Kaplan-Shekhtman-Entin-Wohlman-Aharony cross interactions is considered at thermal equilibrium. Using a group-