ﻻ يوجد ملخص باللغة العربية
Laser-driven proton acceleration from novel cryogenic hydrogen target of the thickness of tens of microns irradiated by multiPW laser pulse is investigated here for relevant laser parameters accessible in near future. It is demonstrated that the efficiency of proton acceleration from relatively thick hydrogen solid ribbon largely exceeds the acceleration efficiency for a thinner ionized plastic foil, which can be explained by enhanced hole boring driven by laser ponderomotive force in the case of light ions and lower target density. Three-dimensional (3D) particle-in-cell (PIC) simulations of laser pulse interaction with relatively thick hydrogen target show larger energies of protons accelerated in the target interior during the hole boring phase and reduced energies of protons accelerated from the rear side of the target by quasistatic electric field compared with the results obtained from two-dimensional (2D) PIC calculations. Linearly and circularly polarized multiPW laser pulses of duration exceeding 100 fs show similar performance in terms of proton acceleration from both the target interior as well as from the rear side of the target. When ultrashort pulse ($sim$ 30 fs) is assumed, the number of accelerated protons from the target interior is substantially reduced.
The generation of fast ion beams in the hole-boring radiation pressure acceleration by intense laser pulses has been studied for targets with different ion components. We find that the oscillation of the longitudinal electric field for accelerating i
We study electron acceleration in a plasma wakefield under the influence of the radiation-reaction force caused by the transverse betatron oscillations of the electron in the wakefield. Both the classical and the strong quantum-electrodynamic (QED) l
In the interaction of laser pulses of extreme intensity ($>10^{23}~{rm W cm}^{-2}$) with high-density, thick plasma targets, simulations show significant radiation friction losses, in contrast to thin targets for which such losses are negligible. We
We show efficient laser driven proton acceleration up to 14MeV from a 50 $mu$m thick cryogenic hydrogen ribbon. Pulses of the short pulse laser ELFIE at LULI with a pulse length of $approx$ 350 fs at an energy of 8 J per pulse are directed onto the t
Radiation Pressure Acceleration relies on high intensity laser pulse interacting with solid target to obtain high maximum energy, quasimonoenergetic ion beams. Either extremely high power laser pulses or tight focusing of laser radiation is required.