ﻻ يوجد ملخص باللغة العربية
Satellite remote sensing of trace gases such as carbon dioxide (CO$_2$) has increased our ability to observe and understand Earths climate. However, these remote sensing data, specifically~Level 2 retrievals, tend to be irregular in space and time, and hence, spatio-temporal prediction is required to infer values at any location and time point. Such inferences are not only required to answer important questions about our climate, but they are also needed for validating the satellite instrument, since Level 2 retrievals are generally not co-located with ground-based remote sensing instruments. Here, we discuss statistical approaches to construct Level 3 products from Level 2 retrievals, placing particular emphasis on the strengths and potential pitfalls when using statistical prediction in this context. Following this discussion, we use a spatio-temporal statistical modelling framework known as fixed rank kriging (FRK) to obtain global predictions and prediction standard errors of column-averaged carbon dioxide based on Version 7r and Version 8r retrievals from the Orbiting Carbon Observatory-2 (OCO-2) satellite. The FRK predictions allow us to validate statistically the Level 2 retrievals globally even though the data are at locations and at time points that do not coincide with validation data. Importantly, the validation takes into account the prediction uncertainty, which is dependent both on the temporally-varying density of observations around the ground-based measurement sites and on the spatio-temporal high-frequency components of the trace gas field that are not explicitly modelled. Here, for validation of remotely-sensed CO$_2$ data, we use observations from the Total Carbon Column Observing Network. We demonstrate that the resulting FRK product based on Version 8r compares better with TCCON data than that based on Version 7r.
This paper introduces a modular processing chain to derive global high-resolution maps of leaf traits. In particular, we present global maps at 500 m resolution of specific leaf area, leaf dry matter content, leaf nitrogen and phosphorus content per
This entry in the Encyclopedia of Complexity and Systems Science, Springer present a summary of some of the concepts and calculational tools that have been developed in attempts to apply statistical physics approaches to seismology. We summarize the
The rotational Doppler effect associated with lights orbital angular momentum (OAM) has been found as a powerful tool to detect rotating bodies. However, this method was only demonstrated experimentally on the laboratory scale under well controlled c
Our planet is viewed by satellites through multiple sensors (e.g., multi-spectral, Lidar and SAR) and at different times. Multi-view observations bring us complementary information than the single one. Alternatively, there are common features shared
We show how two techniques from statistical physics can be adapted to solve a variant of the notorious Unique Games problem, potentially opening new avenues towards the Unique Games Conjecture. The variant, which we call Count Unique Games, is a prom