ﻻ يوجد ملخص باللغة العربية
We demonstrate that symmetry breaking opens a new degree of freedom to tailor the energy-momentum dispersion in photonic crystals. Using a general theoretical framework in two illustrative practical structures, we show that breaking symmetry enables an on-demand tuning of the local density of states of a same photonic band from zero (Dirac cone dispersion) to infinity (flatband dispersion), as well as any constant density over an adjustable spectral range. As a proof-of-concept, we experimentally demonstrate the transformation of a very same photonic band from conventional quadratic shape to Dirac dispersion, flatband dispersion and multivaley one, by finely tuning the vertical symmetry breaking. Our results provide an unprecedented degree of freedom for optical dispersion engineering in planar integrated photonic devices.
Simulation of fermionic relativistic physics (such as Dirac and Weyl points) has led the dicovery of versatile and exotic phenomena in photonics, of which the optical-frequency realization is, however, still a challenging aim. Here we discover that t
We establish experimentally a photonic super-honeycomb lattice (sHCL) by use of a cw-laser writing technique, and thereby demonstrate two distinct flatband line states that manifest as noncontractible-loop-states in an infinite flatband lattice. Thes
On-demand, switchable phase transitions between topologically non-trivial and trivial photonic states are demonstrated. Specifically, it is shown that integration of a 2D array of coupled ring resonators within a thermal heater array enables unparall
Motivated by simulations of carbon nanocones (see Jordan and Crespi, Phys. Rev. Lett., 2004), we consider a variational plate model for an elastic cone under compression in the direction of the cone symmetry axis. Assuming radial symmetry, and modeli
Real photon pairs can be created in a dynamic cavity with periodically modulated refractive index of the constituent media or oscillating boundaries. This effect is called Dynamic Casimir effect (DCE), which represents one of the most amazing predict