ﻻ يوجد ملخص باللغة العربية
The selection of high-affinity aptamers is of paramount interest for clinical and technological applications. A novel strategy is proposed to validate the reliability of the 3D structures of aptamers, produced in silico by using free software. The procedure consists of three steps: a. the production of a large set of conformations for each candidate aptamer, b. the rigid docking upon the receptor, c. the topological and electrical characterization of the products. Steps a. and b. allow a global binding score of the ligand-receptor complexes based on the distribution of the effective affinity, i.e. the sum of the conformational and the docking energy. Step c. employs a complex network approach (Proteotronics) to characterize the electrical properties of the aptamers and the ligand-receptor complexes. The test-bed is represented by a group of anti- Angiopoietin-2 aptamers. In a previous literature these aptamers were processed both in vitro and in silico, by using an approach different from that here presented, and finally tested with a SPS experiment. Computational expectations and experimental outcomes did not agree, while our results show a good agreement with the known measurements. The devised procedure is not aptamer-specific and, integrating structure production with structure selection, candidates itself as a quite complete theoretical approach for aptamer selection.
Different research communities have developed various approaches to assess the credibility of predictive models. Each approach usually works well for a specific type of model, and under some epistemic conditions that are normally satisfied within tha
The G-protein coupled receptor (GPCR) superfamily is currently the largest class of therapeutic targets. textit{In silico} prediction of interactions between GPCRs and small molecules is therefore a crucial step in the drug discovery process, which r
SARS-CoV-2 is a severe respiratory infection that infects humans. Its outburst entitled it as a pandemic emergence. To get a grip on this, outbreak specific preventive and therapeutic interventions are urgently needed. It must be said that, until now
Time-series of high throughput gene sequencing data intended for gene regulatory network (GRN) inference are often short due to the high costs of sampling cell systems. Moreover, experimentalists lack a set of quantitative guidelines that prescribe t
Tuberculosis (TB) is one of the deadliest diseases worldwide, with 1,5 million fatalities every year along with potential devastating effects on society, families and individuals. To address this alarming burden, vaccines can play a fundamental role,