ترغب بنشر مسار تعليمي؟ اضغط هنا

A two-species five-beam magneto-optical trap for highly magnetic Er and Dy atoms

110   0   0.0 ( 0 )
 نشر من قبل Arno Trautmann
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on the first realization of a two-species magneto-optical trap (MOT) for erbium and dysprosium. The MOT operates on an intercombination line for the respective species. Owing to the narrow-line character of such a cooling transition and the action of gravity, we demonstrate a novel trap geometry employing only five beams in orthogonal configuration. We observe that the mixture is cooled and trapped very efficiently, with up to um{5e8} Er atoms and um{e9} Dy atoms at temperatures of about $10,mu K$. Our results offer an ideal starting condition for the creation of a dipolar quantum mixture of highly magnetic atoms.



قيم البحث

اقرأ أيضاً

314 - T. Maier , H. Kadau , M. Schmitt 2014
We present our technique to create a magneto-optical trap for dysprosium atoms using the narrow-line cooling transition at 626$,$nm to achieve suitable conditions for direct loading into an optical dipole trap. The magneto-optical trap is loaded from an atomic beam via a Zeeman slower using the strongest atomic transition at 421$,$nm. With this combination of two cooling transitions we can trap up to $2.0cdot10^8$ atoms at temperatures down to 6$, mu$K. This cooling approach is simpler than present work with ultracold dysprosium and provides similar starting conditions for a transfer to an optical dipole trap.
173 - Armin Ridinger 2011
We present the design, implementation and characterization of a dual-species magneto-optical trap (MOT) for fermionic 6Li and 40K atoms with large atom numbers. The MOT simultaneously contains 5.2x10^9 6Li-atoms and 8.0x10^9 40K-atoms, which are cont inuously loaded by a Zeeman slower for 6Li and a 2D-MOT for 40K. The atom sources induce capture rates of 1.2x10^9 6Li-atoms/s and 1.4x10^9 40K-atoms/s. Trap losses due to light-induced interspecies collisions of ~65% were observed and could be minimized to ~10% by using low magnetic field gradients and low light powers in the repumping light of both atomic species. The described system represents the starting point for the production of a large-atom number quantum degenerate Fermi-Fermi mixture.
We describe an experimental setup for producing a large cold erbium (Er) sample in a narrow-line magneto-optical trap (MOT) in a simple and efficient way. We implement a pair of angled slowing beams with respect to the Zeeman slower axis, and further slow down atoms exiting from the Zeeman slower. The second-stage slowing beams enable the narrow-line MOT to trap atoms exiting from the Zeeman slower with higher velocity. This scheme is particularly useful when the Zeeman slower is at low optical power without the conventional transverse cooling between an oven and a Zeeman slower, in which case we significantly improve the loading efficiency into the MOT and are able to trap more than $10^8$ atoms in the narrow-line MOT of $^{166}$Er. This work highlights our implementation, which greatly simplifies laser cooling and trapping of Er atoms and also should benefit other similar elements.
From the study of long-range-interacting systems to the simulation of gauge fields, open-shell Lanthanide atoms with their large magnetic moment and narrow optical transitions open novel directions in the field of ultracold quantum gases. As for othe r atomic species, the magneto-optical trap (MOT) is the working horse of experiments but its operation is challenging, due to the large electronic spin of the atoms. Here we present an experimental study of narrow-line Dysprosium MOTs. We show that the combination of radiation pressure and gravitational forces leads to a spontaneous polarization of the electronic spin. The spin composition is measured using a Stern-Gerlach separation of spin levels, revealing that the gas becomes almost fully spin-polarized for large laser frequency detunings. In this regime, we reach the optimal operation of the MOT, with samples of typically $3times 10^8$ atoms at a temperature of 15,$mu$K. The spin polarization reduces the complexity of the radiative cooling description, which allows for a simple model accounting for our measurements. We also measure the rate of density-dependent atom losses, finding good agreement with a model based on light-induced Van der Waals forces. A minimal two-body loss rate $betasim 2times10^{-11},$cm$^{3}$/s is reached in the spin-polarized regime. Our results constitute a benchmark for the experimental study of ultracold gases of magnetic Lanthanide atoms.
143 - T. Maier , H. Kadau , M. Schmitt 2015
We show that for ultracold magnetic lanthanide atoms chaotic scattering emerges due to a combination of anisotropic interaction potentials and Zeeman coupling under an external magnetic field. This scattering is studied in a collaborative experimenta l and theoretical effort for both dysprosium and erbium. We present extensive atom-loss measurements of their dense magnetic Feshbach resonance spectra, analyze their statistical properties, and compare to predictions from a random-matrix-theory inspired model. Furthermore, theoretical coupled-channels simulations of the anisotropic molecular Hamiltonian at zero magnetic field show that weakly-bound, near threshold diatomic levels form overlapping, uncoupled chaotic series that when combined are randomly distributed. The Zeeman interaction shifts and couples these levels, leading to a Feshbach spectrum of zero-energy bound states with nearest-neighbor spacings that changes from randomly to chaotically distributed for increasing magnetic field. Finally, we show that the extreme temperature sensitivity of a small, but sizeable fraction of the resonances in the Dy and Er atom-loss spectra is due to resonant non-zero partial-wave collisions. Our threshold analysis for these resonances indicates a large collision-energy dependence of the three-body recombination rate.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا