ﻻ يوجد ملخص باللغة العربية
In this work, we investigate the heat exchange between two quantum systems whose initial equilibrium states are described by the generalized Gibbs ensemble. First, we generalize the fluctuation relations for heat exchange discovered by Jarzynski and Wojcik to quantum systems prepared in the equilibrium states described by the generalized Gibbs ensemble at different generalized temperatures. Second, we extend the connections between heat exchange and Renyi divergences to quantum systems with very general initial conditions.These relations are applicable for quantum systems with conserved quantities and are universally valid for quantum systems in the integrable and chaotic regimes.
We study the statistics of energy fluctuations in a three-level quantum system subject to a sequence of projective quantum measurements. We check that, as expected, the quantum Jarzynski equality holds provided that the initial state is thermal. The
In this work, we establish an exact relation which connects the heat exchange between two systems initialized in their thermodynamic equilibrium states at different temperatures and the R{e}nyi divergences between the initial thermodynamic equilibriu
We formulate exact generalized nonequilibrium fluctuation relations for the quantum mechanical harmonic oscillator coupled to multiple harmonic baths. Each of the different baths is prepared in its own individual (in general nonthermal) state. Starti
In Newtonian mechanics, any closed-system dynamics of a composite system in a microstate will leave all its individual subsystems in distinct microstates, however this fails dramatically in quantum mechanics due to the existence of quantum entangleme
We derive a general scheme to obtain quantum fluctuation relations for dynamical observables in open quantum systems. For concreteness we consider Markovian non-unitary dynamics that is unraveled in terms of quantum jump trajectories, and exploit tec