ﻻ يوجد ملخص باللغة العربية
The goal of this paper is twofold. First, we present a unified way of formulating numerical integration problems from both approximation theory and discrepancy theory. Second, we show how techniques, developed in approximation theory, work in proving lower bounds for recently developed new type of discrepancy -- the smooth discrepancy.
We show that if a numerical method is posed as a sequence of operators acting on data and depending on a parameter, typically a measure of the size of discretization, then consistency, convergence and stability can be related by a Lax-Richtmyer type
The numerical integration of an analytical function $f(x)$ using a finite set of equidistant points can be performed by quadrature formulas like the Newton-Cotes. Unlike Gaussian quadrature formulas however, higher-order Newton-Cotes formulas are not
In this work, a novel approach for the reliable and efficient numerical integration of the Kuramoto model on graphs is studied. For this purpose, the notion of order parameters is revisited for the classical Kuramoto model describing all-to-all inter
Victoir (2004) developed a method to construct cubature formulae with various combinatorial objects. Motivated by this, we generalize Victoirs method with one more combinatorial object, called regular t-wise balanced designs. Many cubature of small i
This paper reinforces numerical iterated integration developed by Muhammad--Mori in the following two points: 1) the approximation formula is modified so that it can achieve a better convergence rate in more general cases, and 2) explicit error bound