ﻻ يوجد ملخص باللغة العربية
We study the thermodynamics of AdS-Schwarzschild black hole in the presence of an external string cloud. We observe that, at any temperature, the black hole configuration is stable with non-zero entropy. We further notice that, when the value of the curvature constant equals to one, if the string cloud density has less than a critical value, within a certain range of temperature three black holes configuration exist. One of these black holes is unstable and other two are stable. At a critical temperature, a transition between these two stable black holes takes place which leads us to conclude that the bound state of quark and anti-quark pairs may not exist. By studying the corresponding dual gauge theory we confirm that the instability of the bound state of quark and anti-quark pair in the dual gauge theory.
The strongly coupled dynamics of black hole formation in bulk AdS is conjectured to be dual to the thermalization of a weakly interacting CFT on the boundary for low $N$ which, for $Ntoinfty$, becomes strongly coupled. We search for this thermalizati
By considering the fifth order term of the interaction potential in massive gravity theory, we study the $P-V$ critical behaviors of AdS black hole in $d geq 7$ dimensional space-time, and find the tricritical point and the solid/liquid/gas phase tra
We consider the eikonal phase associated with the gravitational scattering of a highly energetic light particle off a very heavy object in AdS spacetime. A simple expression for this phase follows from the WKB approximation to the scattering amplitud
As is well known that RN-AdS black hole has a phase transition which is similar to that of van der Waals system. The phase transition depends on the electric potential of the black hole and is not the one between a large black hole and a small black
We provide the metric, the gravitino fields and the gauge fields to all orders in the fermionic zero modes for D=5 and D=4, N=2 gauged supergravity solutions starting from non-extremal AdS--Schwarzschild black holes. We compute the Brown-York stress-