ترغب بنشر مسار تعليمي؟ اضغط هنا

Light Scattering From an Atomic Array Trapped Near a One-Dimensional Nanoscale Waveguide: a Microscopic Approach

143   0   0.0 ( 0 )
 نشر من قبل Alexandra Sheremet
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The coupling of atomic arrays and one-dimensional subwavelength waveguides gives rise to in- teresting photon transport properties, such as recent experimental demonstrations of large Bragg reflection and paves the way for a variety of potential applications in the field of quantum non-linear optics. Here, we present a theoretical analysis for the process of single-photon scattering in this configuration using a full microscopic approach. Based on this formalism, we analyze the spectral dependencies for different scattering channels from either ordered or disordered arrays. The de- veloped approach is entirely applicable for a single-photon scattering from a quasi-one-dimensional array of multilevel atoms with degenerate ground state energy structure. Our approach provides an important framework for including not only Rayleigh but also Raman channels in the microscopic description of the cooperative scattering process.



قيم البحث

اقرأ أيضاً

We report experimental observations of large Bragg reflection from arrays of cold atoms trapped near a one-dimensional nanoscale waveguide. By using an optical lattice in the evanescent field surrounding a nanofiber with a period nearly commensurate with the resonant wavelength, we observe a reflectance of up to 75% for the guided mode. Each atom behaves as a partially-reflecting mirror and an ordered chain of about 2000 atoms is sufficient to realize an efficient Bragg mirror. Measurements of the reflection spectra as a function of the lattice period and the probe polarization are reported. The latter shows the effect of the chiral character of nanoscale waveguides on this reflection. The ability to control photon transport in 1D waveguides coupled to spin systems would enable novel quantum network capabilities and the study of many-body effects emerging from long-range interactions.
Ordered atomic arrays trapped in the vicinity of nanoscale waveguides offer original light-matter interfaces, with applications to quantum information and quantum non-linear optics. Here, we study the decay dynamics of a single collective atomic exci tation coupled to a waveguide in different configurations. The atoms are arranged as a linear array and only a segment of them is excited to a superradiant mode and emits light into the waveguide. Additional atomic chains placed on one or both sides play a passive role, either reflecting or absorbing this emission. We show that when varying the geometry, such a one-dimensional atomic system could be able to redirect the emitted light, to directionally reduce or enhance it, and in some cases to localize it in a cavity formed by the atomic mirrors bounding the system.
We theoretically investigate the quantum scattering of a single-photon pulse interacting with an ensemble of $Lambda$-type three-level atoms coupled to a one-dimensional waveguide. With an effective non-Hermitian Hamiltonian, we study the collective interaction between the atoms mediated by the waveguide mode. In our scheme, the atoms are randomly placed in the lattice along the axis of the one-dimensional waveguide, which closely corresponds to the practical condition that the atomic positions can not be controlled precisely in experiment. Many interesting optical properties occur in our waveguide-atom system, such as electromagnetically induced transparency (EIT) and optical depth. Moreover, we observe that strong photon-photon correlation with quantum beats can be generated in the off-resonant case, which provides an effective candidate for producing non-classical light in experiment. With remarkable progress in waveguide-emitter system, our scheme may be feasible in the near future.
Emitter ensembles interact collectively with the radiation field. In the case of a one-dimensional array of atoms near a nanofiber, this collective light-matter interaction does not only lead to an increased photon coupling to the guided modes within the fiber, but also to a drastic enhancement of the chirality in the photon emission. We show that near-perfect chirality is already achieved for moderately-sized ensembles, containing 10 to 15 atoms. This is of importance for developing an efficient interface between atoms and waveguide structures with unidirectional coupling, with applications in quantum computing and communication such as the development of non-reciprocal photon devices or quantum information transfer channels.
167 - Wei Nie , Tao Shi , Franco Nori 2020
Topological matter and topological optics have been studied in many systems, with promising applications in materials science and photonics technology. These advances motivate the study of the interaction between topological matter and light, as well as topological protection in light-matter interactions. In this work, we study a waveguide-interfaced topological atom array. The light-matter interaction is nontrivially modified by topology, yielding novel optical phenomena. We find topology-enhanced photon absorption from the waveguide for large Purcell factor, i.e., $Gamma/Gamma_0gg 1$, where $Gamma$ and $Gamma_0$ are the atomic decays to waveguide and environment, respectively. To understand this unconventional photon absorption, we propose a multi-channel scattering approach and study the interaction spectra for edge- and bulk-state channels. We find that, by breaking inversion and time-reversal symmetries, optical anisotropy is enabled for reflection process, but the transmission is isotropic. Through a perturbation analysis of the edge-state channel, we show that the anisotropy in the reflection process originates from the waveguide-mediated non-Hermitian interaction. However, the inversion symmetry in the non-Hermitian interaction makes the transmission isotropic. At a topology-protected atomic spacing, the subradiant edge state exhibits huge anisotropy. Due to the interplay between edge- and bulk-state channels, a large topological bandgap enhances nonreciprocal reflection of photons in the waveguide for weakly broken time-reversal symmetry, i.e., $Gamma_0/Gammall 1$, producing complete photon absorption. We show that our proposal can be implemented in superconducting quantum circuits. The topology-enhanced photon absorption is useful for quantum detection. This work shows the potential to manipulate light with topological quantum matter.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا