ﻻ يوجد ملخص باللغة العربية
Recently synthesized metastable tetragonal CoSe, isostructural to the FeSe superconductor, offers a new avenue for investigating systems in close proximity to the iron-based superconductors. We present magnetic and transport property measurements on powders and single crystals of CoSe. High field magnetic susceptibility measurements indicate a suppression of the previously reported 10 K ferromagnetic transition with the magnetic susceptibility exhibiting time-dependence below the proposed transition. Dynamic scaling analysis of the time-dependence yields a critical relaxation time of $tau^{*} = 0.064 pm 0.008 $ s which in turn yields an activation energy of $E_{a}^{*}$ = 14.84 $pm$ 0.59 K and an ideal glass temperature $T_{0}^{*}$ = 8.91 $pm$ 0.09 K from Vogel-Fulcher analysis. No transition is observed in resistivity and specific heat measurements, but both measurements indicate that CoSe is metallic. These results are interpreted on the basis of CoSe exhibiting frustrated magnetic ordering arising from competing magnetic interactions. Arrott analysis of single crystal magnetic susceptibility has indicated that the magnetic moments lie in the $ab$-plane so frustration may arise from intralayer magnetic fluctuations as well as interlayer coupling. The results have implications for understanding the superconductivity in the iron chalcogenide systems as well as utilizing CoSe as a host for chemical and physical manipulation to tune and explore emergent phenomena within an expanding new class of transition metal chalcogenides.
FeSe has a unique ground state in which superconductivity coexists with a nematic order without long-range magnetic ordering at ambient pressure. Here, to study how the pairing interaction evolves with nematicity, we measured the thermal conductivity
Fermi surface topology and pairing symmetry are two pivotal characteristics of a superconductor. Superconductivity in one monolayer (1ML) FeSe thin film has attracted great interest recently due to its intriguing interfacial properties and possibly h
The magnetoresistance and magnetic torque of FeS are measured in magnetic fields $B$ of up to 18 T down to a temperature of 0.03 K. The superconducting transition temperature is found to be $T_c$ = 4.1 K, and the anisotropy ratio of the upper critica
We report $^{77}$Se NMR data in the normal and superconducting states of a single crystal of FeSe for several different field orientations. The Knight shift is suppressed in the superconducting state for in-plane fields, but does not vanish at zero t
We use high-resolution angle-resolved photoemission spectroscopy to map the three-dimensional momentum dependence of the superconducting gap in FeSe. We find that on both the hole and electron Fermi surfaces, the magnitude of the gap follows the dist