ﻻ يوجد ملخص باللغة العربية
This paper proposes a generalized framework with joint normalization which learns lower-dimensional subspaces with maximum discriminative power by making use of the Riemannian geometry. In particular, we model the similarity/dissimilarity between subspaces using various metrics defined on Grassmannian and formulate dimen-sionality reduction as a non-linear constraint optimization problem considering the orthogonalization. To obtain the linear mapping, we derive the components required to per-form Riemannian optimization (e.g., Riemannian conju-gate gradient) from the original Grassmannian through an orthonormal projection. We respect the Riemannian ge-ometry of the Grassmann manifold and search for this projection directly from one Grassmann manifold to an-other face-to-face without any additional transformations. In this natural geometry-aware way, any metric on the Grassmann manifold can be resided in our model theoreti-cally. We have combined five metrics with our model and the learning process can be treated as an unconstrained optimization problem on a Grassmann manifold. Exper-iments on several datasets demonstrate that our approach leads to a significant accuracy gain over state-of-the-art methods.
We propose a novel second-order ODE as the continuous-time limit of a Riemannian accelerated gradient-based method on a manifold with curvature bounded from below. This ODE can be seen as a generalization of the ODE derived for Euclidean spaces, and
The vast majority of Dimensionality Reduction (DR) techniques rely on second-order statistics to define their optimization objective. Even though this provides adequate results in most cases, it comes with several shortcomings. The methods require ca
We explore the application of linear discriminant analysis (LDA) to the features obtained in different layers of pretrained deep convolutional neural networks (CNNs). The advantage of LDA compared to other techniques in dimensionality reduction is th
There are two widely used models for the Grassmannian $operatorname{Gr}(k,n)$, as the set of equivalence classes of orthogonal matrices $operatorname{O}(n)/(operatorname{O}(k) times operatorname{O}(n-k))$, and as the set of trace-$k$ projection matri
We study projection-free methods for constrained Riemannian optimization. In particular, we propose the Riemannian Frank-Wolfe (RFW) method. We analyze non-asymptotic convergence rates of RFW to an optimum for (geodesically) convex problems, and to a