ترغب بنشر مسار تعليمي؟ اضغط هنا

Occurrence of LINER galaxies within the galaxy group environment

255   0   0.0 ( 0 )
 نشر من قبل Georgina Coldwell
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the properties of a sample of 3967 LINER galaxies selected from SDSS-DR7, respect to their proximity to galaxy groups. The host galaxies of LINER have been analysed and compared with a well defined control sample of 3841 non-LINER galaxies matched in redshift, luminosity, colour, morphology, age and stellar mass content. We find no difference between LINER and control galaxies in terms of colour and age of stellar population as function of the virial mass and distance to the geometric centre of the group. However, we find that LINER are more likely to populate low density environments in spite of their morphology, which is typical of high density regions such as rich galaxy clusters. For rich (poor) galaxy groups, the occurrence of LINER is $sim$2 times lower (higher) than the occurrence of matched, non-LINER galaxies. Moreover, LINER hosts do not seem to follow the expected morphology-density relation in groups of high virial mass. The high frequency of LINERS in low density regions could be due to the combination of a sufficiently ample gas reservoir to power the low ionization emission and/or enhanced galaxy interaction rates benefiting the gas flow toward their central regions.

قيم البحث

اقرأ أيضاً

There are many proposed mechanisms driving the morphological transformation of disk galaxies to elliptical galaxies. In this paper, we determine if the observed transformation in low mass groups can be explained by the merger histories of galaxies. W e measured the group mass-morphology relation for groups from the Galaxy and Mass Assembly group catalogue with masses from 10$^{11}$ - 10$^{15}$ M$_{odot}$. Contrary to previous studies, the fraction of elliptical galaxies in our more complete group sample increases significantly with group mass across the full range of group mass. The elliptical fraction increases at a rate of 0.163$pm$0.012 per dex of group mass for groups more massive than 10$^{12.5}$ M$_{odot}$. If we allow for uncertainties in the observed group masses, our results are consistent with a continuous increase in elliptical fraction from group masses as low as 10$^{11}$M$_{odot}$. We tested if this observed relation is consistent with merger activity using a GADGET-2 dark matter simulation of the galaxy groups. We specified that a simulated galaxy would be transformed to an elliptical morphology either if it experienced a major merger or if its cumulative mass gained from minor mergers exceeded 30 per cent of its final mass. We then calculated a group mass-morphology relation for the simulations. The position and slope of the simulated relation were consistent with the observational relation, with a gradient of 0.184$pm$0.010 per dex of group mass. These results demonstrate a strong correlation between the frequency of merger events and disk-to-elliptical galaxy transformation in galaxy group environments.
We study the dependence of the properties of group galaxies on the surrounding large-scale environment, using SDSS-DR7 data. Galaxies are ranked according to their luminosity within each group and classified morphologically by the Sersic index. We ha ve considered samples of the host groups in superstructures of galaxies, and elsewhere. We find a significant dependence of the properties of late-type brightest group galaxies on the large-scale environment: they show statistically significant higher luminosities and stellar masses, redder u-r colours, lower star formation activity and longer star-formation time-scale when embedded in superstructures. By contrast, the properties of the early-type brightest group galaxies are remarkably similar regardless of the group global environment. The other group member galaxies exhibit only the local influence of the group they inhabit. Our analysis comprises tests against the dependence on the host group luminosity and we argue that group brightest member properties are not only determined by the host halo, but also by the large-scale structure which can influence the accretion process onto their late-type brightest galaxies.
Does the environment of a galaxy directly influence the quenching history of a galaxy? Here we investigate the detailed morphological structures and star formation histories of a sample of SDSS group galaxies with both classifications from Galaxy Zoo 2 and NUV detections in GALEX. We use the optical and NUV colours to infer the quenching time and rate describing a simple exponentially declining SFH for each galaxy, along with a control sample of field galaxies. We find that the time since quenching and the rate of quenching do not correlate with the relative velocity of a satellite but are correlated with the group potential. This quenching occurs within an average quenching timescale of $sim2.5~rm{Gyr}$ from star forming to complete quiescence, during an average infall time (from $sim 10R_{200}$ to $0.01R_{200}$) of $sim 2.6~rm{Gyr}$. Our results suggest that the environment does play a direct role in galaxy quenching through quenching mechanisms which are correlated with the group potential, such as harassment, interactions or starvation. Environmental quenching mechanisms which are correlated with satellite velocity, such as ram pressure stripping, are not the main cause of quenching in the group environment. We find that no single mechanism dominates over another, except in the most extreme environments or masses. Instead an interplay of mergers, mass & morphological quenching and environment driven quenching mechanisms dependent on the group potential drive galaxy evolution in groups.
We explore how the group environment may affect the evolution of star-forming galaxies. We select 1197 Galaxy And Mass Assembly (GAMA) groups at $0.05leq z leq 0.2$ and analyze the projected phase space (PPS) diagram, i.e. the galaxy velocity as a fu nction of projected group-centric radius, as a local environmental metric in the low-mass halo regime $10^{12}leq (M_{200}/M_{odot})< 10^{14}$. We study the properties of star-forming group galaxies, exploring the correlation of star formation rate (SFR) with radial distance and stellar mass. We find that the fraction of star-forming group members is higher in the PPS regions dominated by recently accreted galaxies, whereas passive galaxies dominate the virialized regions. We observe a small decline in specific SFR of star-forming galaxies towards the group center by a factor $sim 1.2$ with respect to field galaxies. Similar to cluster studies, we conclude for low-mass halos that star-forming group galaxies represent an infalling population from the field to the halo and show suppressed star formation.
NGC3367 is a nearby isolated active galaxy that shows a radio jet, a strong bar and evidence of lopsidedness. We present a quantitative analysis of the stellar and gaseous structure of the galaxy disk and a search for evidence of recent interaction b ased on new UBVRI Halpha and JHK images and on archival Halpha Fabry-Perot and HI VLA data. From a coupled 1D/2D GALFIT bulge/bar/disk decomposition an (B/D ~ 0.07-0.1) exponential pseudobulge is inferred in all the observed bands. A NIR estimate of the bar strength <Q_T{max}(R)> = 0.44 places NGC 3367 bar among the strongest ones. The asymmetry properties were studied using (1) optical and NIR CAS indexes (2) the stellar (NIR) and gaseous (Halpha, HI) A_1 Fourier mode amplitudes and (3) the HI integrated profile and HI mean intensity distribution. While the average stellar component shows asymmetry values close to the average found in the Local Universe for isolated galaxies, the young stellar component and gas values are largely decoupled showing significantly larger A_1 mode amplitudes suggesting that the gas has been recently perturbed. Our search for (1) faint stellar structures in the outer regions (up to u_R ~ 26 mag arcsec^{-2}), (2) (Halpha) star-forming satellite galaxies and (3) regions with different colors (stellar populations) along the disk all failed. Such an absence is interpreted using recent numerical simulations to constrain a tidal event with an LMC like galaxy to some dynamical times in the past or to a current very low mass, gas rich accretion. We conclude that a cold accretion mode (gas and small/dark galaxies) may be responsible of the nuclear activity and peculiar (young stars and gas) morphology regardless of the highly isolated environment. Black hole growth in bulgeless galaxies may be triggered by cosmic smooth mass accretion.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا