ﻻ يوجد ملخص باللغة العربية
We have determined the temperature evolution of the spin and orbital moments in the zero magnetization ferromagnet Sm$_{1-x}$Gd$_x$Al$_2$ (x = 0.024) by combining polarized and unpolarized single crystal neutron diffraction data. The sensitivity of the polarized neutron technique has allowed the moment values to be determined with a precision of $approx 0.1$~mub. Our results clearly demonstrate that, when magnetised by a field of 8T, the spin and orbital moments in Sm$_{1-x}$Gd$_x$Al$_2$ are oppositely directed so that the net magnetization is very small. Below 60 K the contributions from spin and orbital motions are both about 2mub with that due to orbital motion being slightly larger than that due to spin. Between 60 and 65 K the contributions of each to the magnetization fall rapidly and change sign at Tcomp $approx 67$K above which the aligned moments recover but with the orbital magnetization still slightly higher than the spin one. These results imply that above Tcomp the small resultant magnetization of the smion ion is oppositely directed to the magnetizing field. It is suggested that this anomaly is due to polarization of conduction electron spin associated with the doping Gd$^{3+}$ ions.
The interplay between non-trivial topological states of matter and strong electronic correlations is one of the most compelling open questions in condensed matter physics. Due to experimental challenges, there is an increasing desire to find more mic
Polarised neutron diffraction measurements have been made on HoFeO$_3$ single crystals magnetised in both the [001] and [100] directions ($Pbnm$ setting). The polarisation dependencies of Bragg reflection intensities were measured both with a high fi
Magnetization, neutron diffraction, and high-energy x-ray diffraction results for Sn-flux grown single-crystal samples of Ca(Co$_{1-x}$Fe$_{x}$)$_{y}$As$_{2}$, $0leq xleq1$, $1.86leq y leq 2$, are presented and reveal that A-type antiferromagnetic or
We use neutron powder diffraction to study on the non-superconducting phases of ThFeAsN$_{1-x}$O$_x$ with $x=0.15, 0.6$. In our previous results on the superconducting phase ThFeAsN with $T_c=$ 30 K, no magnetic transition is observed by cooling down
We report the structural, magnetic, and magnetocaloric properties of Co$_2$Cr$_{1-x}$Ti$_x$Al ($x=$ 0--0.5) Heusler alloys for spintronic and magnetic refrigerator applications. Room temperature X-ray diffraction and neutron diffraction patterns alon