ترغب بنشر مسار تعليمي؟ اضغط هنا

Corrections to di-Higgs boson production with light stops and modified Higgs couplings

131   0   0.0 ( 0 )
 نشر من قبل Aniket Joglekar
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The Higgs pair production in gluon fusion is a sensitive probe of beyond-Standard Model (BSM) phenomena and its detection is a major goal for the LHC and higher energy hadron collider experiments. In this work we reanalyze the possible modifications of the Higgs pair production cross section within low energy supersymmetry models. We show that the supersymmetric contributions to the Higgs pair production cross section are strongly correlated with the ones of the single Higgs production in the gluon fusion channel. Motivated by the analysis of ATLAS and CMS Higgs production data, we show that the scalar superpartners contributions may lead to significant modification of the di-Higgs production rate and invariant mass distribution with respect to the SM predictions. We also analyze the combined effects on the di-Higgs production rate of a modification of the Higgs trilinear and top-quark Yukawa couplings in the presence of light stops. In particular, we show that due to the destructive interference of the triangle and box amplitude contributions to the di-Higgs production cross section, even a small modification of the top-quark Yukawa coupling can lead to a significant increase of the di-Higgs production rate.



قيم البحث

اقرأ أيضاً

A coupling of a scalar, charged under an unbroken global U(1) symmetry, to the Standard Model via the Higgs portal is one of the simplest gateways to a dark sector. Yet, for masses $m_{S}geq m_{H}/2$ there are few probes of such an interaction. In th is note we evaluate the sensitivity to the Higgs portal coupling of di-Higgs boson production at the LHC as well as at a future high energy hadron collider, FCC-hh, taking into account the full momentum dependence of the process. This significantly impacts the sensitivity compared to estimates of changes in the Higgs-coupling based on the effective potential. We also compare our findings to precision single Higgs boson probes such as the cross section for vector boson associated Higgs production at a future lepton collider, e.g. FCC-ee, as well as searches for missing energy based signatures.
In this paper we present the complete two-loop vertex corrections to scalar and pseudo-scalar Higgs boson production for general colour factors for the gauge group ${rm SU(N)}$ in the limit where the top quark mass gets infinite. We derive a general formula for the vertex correction which holds for conserved and non conserved operators. For the conserved operator we take the electromagnetic vertex correction as an example whereas for the non conserved operators we take the two vertex corrections above. Our observations for the structure of the pole terms $1/epsilon^4$, $1/epsilon^3$ and $1/epsilon^2$ in two loop order are the same as made earlier in the literature for electromagnetism. However we also elucidate the origin of the second order single pole term which is equal to the second order singular part of the anomalous dimension plus a universal function which is the same for the quark and the gluon. [3mm]
We comprehensively evaluate renormalized Higgs boson couplings at one-loop level in non-minimal Higgs models such as the Higgs Singlet Model (HSM) and the four types of Two Higgs Doublet Models (THDMs) with a softly-broken $Z_2$ symmetry. The renorma lization calculation is performed in the on-shell scheme improved by using the pinch technique to eliminate the gauge dependence in the renormalized couplings. We first review the pinch technique for scalar boson two-point functions in the Standard Model (SM), the HSM and the THDMs. We then discuss the difference in the results of the renormalized Higgs boson couplings between the improved on-shell scheme and the ordinal one with a gauge dependence appearing in mixing parameters of scalar bosons. Finally, we widely investigate how we can identify the HSM and the THDMs focusing on the pattern of deviations in the renormalized Higgs boson couplings from predictions in the SM.
An important task at future colliders is the investigation of the Higgs-boson sector. Here the measurement of the triple Higgs coupling(s) plays a special role. Based on previous analyses, within the framework of Two Higgs Doublet Models (2HDM) type~ I and~II, we define and analyze several two-dimensional benchmark planes, that are over large parts in agreement with all theoretical and experimental constraints. For these planes we evaluate di-Higgs production cross sections at future high-energy $e^+e^-$ colliders, such as ILC or CLIC. We consider two different channels for the neutral di-Higgs pairs $h_i h_j=hh,hH,HH,AA$: $e^+e^- to h_i h_j Z$ and $e^+e^- to h_i h_j u bar u$. In both channels the various triple Higgs-boson couplings contribute substantially. We find regions with a strong enhancement of the production channel of two SM-like light Higgs bosons and/or with very large production cross sections involving one light and one heavy or two heavy 2HDM Higgs bosons, offering interesting prospects for the ILC or CLIC. The mechanisms leading to these enhanced production cross sections are analyzed in detail. We propose the use of cross section distributions with the invariant mass of the two final Higgs bosons where the contributions from intermediate resonant and non-resonant BSM Higgs bosons play a crucial role. We outline which process at which center-of-mass energy would be best suited to probe the corresponding triple Higgs-boson couplings.
239 - S. Actis , G. Passarino , C. Sturm 2008
Results for the complete NLO electroweak corrections to Standard Model Higgs production via gluon fusion are included in the total cross section for hadronic collisions. Artificially large threshold effects are avoided working in the complex-mass sch eme. The numerical impact at LHC (Tevatron) energies is explored for Higgs mass values up to 500 GeV (200 GeV). Assuming a complete factorization of the electroweak corrections, one finds a +5 % shift with respect to the NNLO QCD cross section for a Higgs mass of 120 GeV both at the LHC and the Tevatron. Adopting two different factorization schemes for the electroweak effects, an estimate of the corresponding total theoretical uncertainty is computed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا