ﻻ يوجد ملخص باللغة العربية
We establish new recurrence and multiple recurrence results for a rather large family $mathcal{F}$ of non-polynomial functions which includes tempered functions defined in [11], as well as functions from a Hardy field with the property that for some $ellin mathbb{N}cup{0}$, $lim_{xtoinfty }f^{(ell)}(x)=pminfty$ and $lim_{xtoinfty }f^{(ell+1)}(x)=0$. Among other things, we show that for any $finmathcal{F}$, any invertible probability measure preserving system $(X,mathcal{B},mu,T)$, any $Ainmathcal{B}$ with $mu(A)>0$, and any $epsilon>0$, the sets of returns $$ R_{epsilon, A}= big{ninmathbb{N}:mu(Acap T^{-lfloor f(n)rfloor}A)>mu^2(A)-epsilonbig} $$ and $$ R^{(k)}_{A}= big{ ninmathbb{N}: mubig(Acap T^{lfloor f(n)rfloor}Acap T^{lfloor f(n+1)rfloor}Acapcdotscap T^{lfloor f(n+k)rfloor}Abig)>0big} $$ possess somewhat unexpected properties of largeness; in particular, they are thick, i.e., contain arbitrarily long intervals.
We establish characteristic factors for natural classes of polynomial multiple ergodic averages in rings of integers and derive corresponding Khintchine-type recurrence theorems, extending results of Frantzikinakis and Kra and of Frantzikinakis about
We provide various counter examples for quantitative multiple recurrence problems for systems with more than one transformation. We show that $bullet$ There exists an ergodic system $(X,mathcal{X},mu,T_1,T_2)$ with two commuting transformations s
Let $(X, mathcal{B},mu,T)$ be an ergodic measure preserving system, $A in mathcal{B}$ and $epsilon>0$. We study the largeness of sets of the form begin{equation*} begin{split} S = left{ ninmathbb{N}colonmu(Acap T^{-f_1(n)}Acap T^{-f_2(n)}Acapldotscap
The purpose of this paper is to study the phenomenon of large intersections in the framework of multiple recurrence for measure-preserving actions of countable abelian groups. Among other things, we show: (1) If $G$ is a countable abelian group and $
We study multicorrelation sequences arising from systems with commuting transformations. Our main result is a refinement of a decomposition result of Frantzikinakis and it states that any multicorrelation sequences for commuting transformations can b