ترغب بنشر مسار تعليمي؟ اضغط هنا

Transport spectroscopy for Paschen-Back splitting of Landau levels in InAs nanowires

85   0   0.0 ( 0 )
 نشر من قبل Myung-Ho Bae
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The coupling of electron orbital motion and spin leads to nontrivial changes in energy-level structures, leading to various spectroscopies and applications. In atoms, such spin-orbit coupling (SOC) causes anomalous Zeeman splitting, known as the Paschen-Back (PB) effect, in the pres-ence of a strong magnetic field. In solids, SOC generates energy-band inversion or splitting, a prerequisite for topological phases or Majorana fermions, at zero or weak magnetic fields. Here, we present the first observation of PB splitting of Landau levels (LLs) in indium arsenide nan-owires in a strong-field regime. Our energy-resolved transport spectroscopy results indicated the presence of LL-dependent anomalous Zeeman splitting in these nanowires, analogous to the atomic PB effect. This result was found to be in good agreement with a theoretical analysis based on Rashba SOC. Our findings also suggested a way of generating spin-resolved electron transport in nanowires.

قيم البحث

اقرأ أيضاً

We report on magneto-transport measurements in InAs nanowires under large magnetic field (up to 55T), providing a direct spectroscopy of the 1D electronic band structure. Large modulations of the magneto-conductance mediated by an accurate control of the Fermi energy reveal the Landau fragmentation, carrying the fingerprints of the confined InAs material. Our numerical simulations of the magnetic band structure consistently support the experimental results and reveal key parameters of the electronic confinement.
We present a magneto-infrared spectroscopy study on a newly identified three-dimensional (3D) Dirac semimetal ZrTe$_5$. We observe clear transitions between Landau levels and their further splitting under magnetic field. Both the sequence of transiti ons and their field dependence follow quantitatively the relation expected for 3D emph{massless} Dirac fermions. The measurement also reveals an exceptionally low magnetic field needed to drive the compound into its quantum limit, demonstrating that ZrTe$_5$ is an extremely clean system and ideal platform for studying 3D Dirac fermions. The splitting of the Landau levels provides a direct and bulk spectroscopic evidence that a relatively weak magnetic field can produce a sizeable Zeeman effect on the 3D Dirac fermions, which lifts the spin degeneracy of Landau levels. Our analysis indicates that the compound evolves from a Dirac semimetal into a topological line-node semimetal under current magnetic field configuration.
Energy spectroscopy of strongly interacting phases requires probes which minimize screening while retaining spectral resolution and local sensitivity. Here we demonstrate that such probes can be realized using atomic sized quantum dots bound to defec ts in hexagonal Boron Nitride tunnel barriers, placed at nanometric distance from graphene. With dot energies capacitively tuned by a planar graphite electrode, dot-assisted tunneling becomes highly sensitive to the graphene excitation spectrum. The spectra track the onset of degeneracy lifting with magnetic field at the ground state, and at unoccupied exited states, revealing symmetry-broken gaps which develop steeply with magnetic field - corresponding to Lande $g$ factors as high as 160. Measured up to $B = 33$ T, spectra exhibit a primary energy split between spin-polarized excited states, and a secondary spin-dependent valley-split. Our results show that defect dots probe the spectra while minimizing local screening, and are thus exceptionally sensitive to interacting states.
The electronic Raman scattering of bulk graphite at zero magnetic field reveals a structureless signal characteristic of a metal. For T<~100 K and B > 2 T, several peaks at energies scaling linearly with magnetic field were observed and ascribed to t ransitions from the lowest energy Landau level(s) (LL) to excited states belonging to the same ladder. The LLs are equally (unequally) spaced for high (low) quantum numbers, being surprisingly consistent with the LL sequence from massive Dirac Fermions (m* = 0.033(2) m_e) with Berrys phase 2pi found in graphene bilayers. These results provide spectroscopic evidence that much of the unconventional physics recently revealed by graphene multilayers is also shared by bulk graphite.
We use polarized photocurrent spectroscopy in a nanowire device to investigate the band structure of hexagonal Wurtzite InAs. Signatures of optical transitions between four valence bands and two conduction bands are observed which are consistent with the symmetries expected from group theory. The ground state transition energy identified from photocurrent spectra is seen to be consistent with photoluminescence emitted from a cluster of nanowires from the same growth substrate. From the energies of the observed bands we determine the spin orbit and crystal field energies in Wurtzite InAs. This information is essential to the development of crystal phase engineering of this important III-V semiconductor.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا