ترغب بنشر مسار تعليمي؟ اضغط هنا

A Systematic Literature Review of Experiments in Socially Assistive Robotics using Humanoid Robots

110   0   0.0 ( 0 )
 نشر من قبل Floris Erich
 تاريخ النشر 2017
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We perform a Systematic Literature Review to discover how Humanoid robots are being applied in Socially Assistive Robotics experiments. Our search returned 24 papers, from which 16 were included for closer analysis. To do this analysis we used a conceptual framework inspired by Behavior-based Robotics. We were interested in finding out which robot was used (most use the robot NAO), what the goals of the application were (teaching, assisting, playing, instructing), how the robot was controlled (manually in most of the experiments), what kind of behaviors the robot exhibited (reacting to touch, pointing at body parts, singing a song, dancing, among others), what kind of actuators the robot used (always motors, sometimes speakers, hardly ever any other type of actuator) and what kind of sensors the robot used (in many studies the robot did not use any sensors at all, in others the robot frequently used camera and/or microphone). The results of this study can be used for designing software frameworks targeting Humanoid Socially Assistive Robotics, especially in the context of Software Product Line Engineering projects.



قيم البحث

اقرأ أيضاً

Humanoid robots could be versatile and intuitive human avatars that operate remotely in inaccessible places: the robot could reproduce in the remote location the movements of an operator equipped with a wearable motion capture device while sending vi sual feedback to the operator. While substantial progress has been made on transferring (retargeting) human motions to humanoid robots, a major problem preventing the deployment of such systems in real applications is the presence of communication delays between the human input and the feedback from the robot: even a few hundred milliseconds of delay can irreversibly disturb the operator, let alone a few seconds. To overcome these delays, we introduce a system in which a humanoid robot executes commands before it actually receives them, so that the visual feedback appears to be synchronized to the operator, whereas the robot executed the commands in the past. To do so, the robot continuously predicts future commands by querying a machine learning model that is trained on past trajectories and conditioned on the last received commands. In our experiments, an operator was able to successfully control a humanoid robot (32 degrees of freedom) with stochastic delays up to 2 seconds in several whole-body manipulation tasks, including reaching different targets, picking up, and placing a box at distinct locations.
Physical embodiment is a required component for robots that are structurally coupled with their real-world environments. However, most socially interactive robots do not need to physically interact with their environments in order to perform their ta sks. When and why should embodied robots be used instead of simpler and cheaper virtual agents? This paper reviews the existing work that explores the role of physical embodiment in socially interactive robots. This class consists of robots that are not only capable of engaging in social interaction with humans, but are using primarily their social capabilities to perform their desired functions. Socially interactive robots provide entertainment, information, and/or assistance; this last category is typically encompassed by socially assistive robotics. In all cases, such robots can achieve their primary functions without performing functional physical work. To comprehensively evaluate the existing body of work on embodiment, we first review work from established related fields including psychology, philosophy, and sociology. We then systematically review 65 studies evaluating aspects of embodiment published from 2003 to 2017 in major peer-reviewed robotics publication venues. We examine relevant aspects of the selected studies, focusing on the embodiments compared, tasks evaluated, social roles of robots, and measurements. We introduce three taxonomies for the types of robot embodiment, robot social roles, and human-robot tasks. These taxonomies are used to deconstruct the design and interaction spaces of socially interactive robots and facilitate analysis and discussion of the reviewed studies. We use this newly-defined methodology to critically discuss existing works, revealing topics within embodiment research for social interaction, assistive robotics, and service robotics.
This paper presents a new learning framework that leverages the knowledge from imitation learning, deep reinforcement learning, and control theories to achieve human-style locomotion that is natural, dynamic, and robust for humanoids. We proposed nov el approaches to introduce human bias, i.e. motion capture data and a special Multi-Expert network structure. We used the Multi-Expert network structure to smoothly blend behavioral features, and used the augmented reward design for the task and imitation rewards. Our reward design is composable, tunable, and explainable by using fundamental concepts from conventional humanoid control. We rigorously validated and benchmarked the learning framework which consistently produced robust locomotion behaviors in various test scenarios. Further, we demonstrated the capability of learning robust and versatile policies in the presence of disturbances, such as terrain irregularities and external pushes.
Assistive robot arms enable people with disabilities to conduct everyday tasks on their own. These arms are dexterous and high-dimensional; however, the interfaces people must use to control their robots are low-dimensional. Consider teleoperating a 7-DoF robot arm with a 2-DoF joystick. The robot is helping you eat dinner, and currently you want to cut a piece of tofu. Todays robots assume a pre-defined mapping between joystick inputs and robot actions: in one mode the joystick controls the robots motion in the x-y plane, in another mode the joystick controls the robots z-yaw motion, and so on. But this mapping misses out on the task you are trying to perform! Ideally, one joystick axis should control how the robot stabs the tofu and the other axis should control different cutting motions. Our insight is that we can achieve intuitive, user-friendly control of assistive robots by embedding the robots high-dimensional actions into low-dimensional and human-controllable latent actions. We divide this process into three parts. First, we explore models for learning latent actions from offline task demonstrations, and formalize the properties that latent actions should satisfy. Next, we combine learned latent actions with autonomous robot assistance to help the user reach and maintain their high-level goals. Finally, we learn a personalized alignment model between joystick inputs and latent actions. We evaluate our resulting approach in four user studies where non-disabled participants reach marshmallows, cook apple pie, cut tofu, and assemble dessert. We then test our approach with two disabled adults who leverage assistive devices on a daily basis.
102 - Yue Liu , Qinghua Lu , Liming Zhu 2021
Blockchain has been increasingly used as a software component to enable decentralisation in software architecture for a variety of applications. Blockchain governance has received considerable attention to ensure the safe and appropriate use and evol ution of blockchain, especially after the Ethereum DAO attack in 2016. To understand the state-of-the-art of blockchain governance and provide an actionable guidance for academia and practitioners, in this paper, we conduct a systematic literature review, identifying 34 primary studies. Our study comprehensively investigates blockchain governance via 5W1H questions. The study results reveal several major findings: 1) the adaptation and upgrade of blockchain are the primary purposes of blockchain governance, while both software quality attributes and human value attributes need to be increasingly considered; 2) blockchain governance mainly relies on the project team, node operators, and users of a blockchain platform; and 3) existing governance solutions can be classified into process mechanisms and product mechanisms, which mainly focus on the operation phase over the blockchain platform layer.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا