ترغب بنشر مسار تعليمي؟ اضغط هنا

Evidence of Neutrino Enhanced Clustering in a Complete Sample of Sloan Survey Clusters, Implying $sum m_{ u}= 0.119 pm 0.034$ eV

431   0   0.0 ( 0 )
 نشر من قبل Razieh Emami Meibody
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The clustering amplitude of 7143 clusters from the Sloan Digital Sky Survey (SDSS) is found to increase with cluster mass, closely agreeing with the Gaussian random field hypothesis for structure formation. The amplitude of the observed cluster correlation exceeds the predictions from pure cold dark matter (CDM) simulation by $simeq 6%$ for the standard Planck-based values of the cosmological parameters. We show that this excess can be naturally accounted for by free streaming of light neutrinos, which opposes gravitational growth, so clusters formed at fixed mass are fewer and hence more biased than for a pure CDM density field. An enhancement of the cluster bias by 7% matches the observations, corresponding to a total neutrino mass, $m_{ u} = 0.119 pm 0.034$ eV at 67% confidence level, for the standard relic neutrino density. If ongoing laboratory experiments favor a normal neutrino mass hierarchy then we may infer a somewhat larger total mass than the minimum oscillation based value, $sum m_{ u} simeq 0.056eV$, with 90% confidence. Much higher precision can be achieved by applying our method to a larger sample of more distant clusters with weak lensing derived masses.



قيم البحث

اقرأ أيضاً

We present optical follow-up observations for candidate clusters in the Clusters Hiding in Plain Sight (CHiPS) survey, which is designed to find new galaxy clusters with extreme central galaxies that were misidentified as bright isolated sources in t he ROSAT All-Sky Survey catalog. We identify 11 cluster candidates around X-ray, radio, and mid-IR bright sources, including six well-known clusters, two false associations of foreground and background clusters, and three new candidates which are observed further with Chandra. Of the three new candidates, we confirm two newly discovered galaxy clusters: CHIPS1356-3421 and CHIPS1911+4455. Both clusters are luminous enough to be detected in the ROSAT All Sky-Survey data if not because of their bright central cores. CHIPS1911+4455 is similar in many ways to the Phoenix cluster, but with a highly-disturbed X-ray morphology on large scales. We find the occurrence rate for clusters that would appear to be X-ray bright point sources in the ROSAT All-Sky Survey (and any surveys with similar angular resolution) to be 2+/-1%, and the occurrence rate of clusters with runaway cooling in their cores to be <1%, consistent with predictions of Chaotic Cold Accretion. With the number of new groups and clusters predicted to be found with eROSITA, the population of clusters that appear to be point sources (due to a central QSO or a dense cool core) could be around 2000. Finally, this survey demonstrates that the Phoenix cluster is likely the strongest cool core at z<0.7 -- anything more extreme would have been found in this survey.
81 - B. Hoeneisen 2018
From Baryon Acoustic Oscillation measurements with Sloan Digital Sky Survey SDSS DR14 galaxies, and the acoustic horizon angle $theta_*$ measured by the Planck Collaboration, we obtain $Omega_m = 0.2724 pm 0.0047$, and $h + 0.020 cdot sum{m_ u} = 0.7 038 pm 0.0060$, assuming flat space and a cosmological constant. We combine this result with the 2018 Planck `TT,TE,EE$+$lowE$+$lensing analysis, and update a study of $sum m_ u$ with new direct measurements of $sigma_8$, and obtain $sum m_ u = 0.27 pm 0.08$ eV assuming three nearly degenerate neutrino eigenstates. Measurements are consistent with $Omega_k = 0$, and $Omega_textrm{de}(a) = Omega_Lambda$ constant.
Non-thermal properties of galaxy clusters have been studied with detailed and deep radio images in comparison with X-ray data. While much progress has been made, most of the studied clusters are at a relatively low redshift (z < 0.3). We here investi gate the evolutionary properties of the non-thermal cluster emission using two statistically complete samples at z > 0.3. We obtained short JVLA observations at L-band of the statistically complete sample of very X-ray luminous clusters from the Massive Cluster Survey (MACS) presented by Ebeling et al. (2010), and redshift range 0.3 - 0.5. We add to this list the complete sample of the 12 most distant MACS clusters (z > 0.5) presented in Ebeling et al. (2007). Most clusters show evidence of emission in the radio regime. We present the radio properties of all clusters in our sample and show images of newly detected diffuse sources. A radio halo is detected in 19 clusters, and five clusters contain a relic source. Most of the brightest cluster galaxies (BCG) in relaxed clusters show radio emission with powers typical of FRII radio galaxies, and some are surrounded by a radio mini-halo. The high frequency of radio emission from the BCG in relaxed clusters suggests that BCG feedback mechanisms are in place already at z about 0.6. The properties of radio halos and the small number of detected relics suggest redshift evolution in the properties of diffuse sources. The radio power (and size) of radio halos could be related to the number of past merger events in the history of the system. In this scenario, the presence of a giant and high-power radio halo is indicative of an evolved system with a large number of past major mergers.
78 - D. Eckert , S. Ettori , J. Coupon 2015
Traditionally, galaxy clusters have been expected to retain all the material accreted since their formation epoch. For this reason, their matter content should be representative of the Universe as a whole, and thus their baryon fraction should be clo se to the Universal baryon fraction. We make use of the sample of the 100 brightest galaxy clusters discovered in the XXL Survey to investigate the fraction of baryons in the form of hot gas and stars in the cluster population. We measure the gas masses of the detected halos and use a mass--temperature relation directly calibrated using weak-lensing measurements for a subset of XXL clusters to estimate the halo mass. We find that the weak-lensing calibrated gas fraction of XXL-100-GC clusters is substantially lower than was found in previous studies using hydrostatic masses. Our best-fit relation between gas fraction and mass reads $f_{rm gas,500}=0.055_{-0.006}^{+0.007}left(M_{rm 500}/10^{14}M_odotright)^{0.21_{-0.10}^{+0.11}}$. The baryon budget of galaxy clusters therefore falls short of the Universal baryon fraction by about a factor of two at $r_{rm 500}$. Our measurements require a hydrostatic bias $1-b=M_X/M_{rm WL}=0.72_{-0.07}^{+0.08}$ to match the gas fraction obtained using lensing and hydrostatic equilibrium. Comparing our gas fraction measurements with the expectations from numerical simulations, our results favour an extreme feedback scheme in which a significant fraction of the baryons are expelled from the cores of halos. This model is, however, in contrast with the thermodynamical properties of observed halos, which might suggest that weak-lensing masses are overestimated. We note that a mass bias $1-b=0.58$ as required to reconcile Planck CMB and cluster counts should translate into an even lower baryon fraction, which poses a major challenge to our current understanding of galaxy clusters. [Abridged]
Radio halos are diffuse synchrotron sources observed in dynamically unrelaxed galaxy clusters. Current observations and models suggest that halos trace turbulent regions in the intra-cluster medium where mildly relativistic particles are re-accelerat ed during cluster mergers. Due to the higher luminosities and detection rates with increasing cluster mass, radio halos have been mainly observed in massive systems ($M_{500} gtrsim 5 times10^{14}$ M$_odot$). Here, we report the discovery of a radio halo with a largest linear scale of $simeq$750 kpc in PSZ2G145.92-12.53 ($z=0.03$) using LOFAR observations at 120$-$168 MHz. With a mass of $M_{500} = (1.9pm0.2) times 10^{14}$ M$_odot$ and a radio power at 150 MHz of $P_{150} = (3.5 pm 0.7) times 10^{23}$ W/Hz, this is the least powerful radio halo in the least massive cluster discovered to date. Additionally, we discover a radio relic with a mildly convex morphology at $sim$1.7 Mpc from the cluster center. Our results demonstrate that LOFAR has the potential to detect radio halos even in low-mass clusters, where the expectation to form them is very low ($sim$5%) based on turbulent re-acceleration models. Together with the observation of large samples of clusters, this opens the possibility to constrain the low end of the power-mass relation of radio halos.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا