ﻻ يوجد ملخص باللغة العربية
Our goal was to compare the open cluster photometric distance scale of the global survey of star clusters in the Milky Way (MWSC) with the distances derived from trigonometric parallaxes from the Gaia DR1/TGAS catalogue and to investigate to which degree and extent both scales agree. We compared the parallax-based and photometry-based distances of 5743 cluster stars selected as members of 1118 clusters based on their kinematic and photometric MWSC membership probabilities. We found good overall agreement between trigonometric and photometric distances of open cluster stars. The residuals between them were small and unbiased up to $log (d,[pc]) approx 2.8$. If we considered only the most populated clusters and used cluster distances obtained from the mean trigonometric parallax of their MWSC members, the good agreement of the distance scales continued up to $log (d,[pc]) approx 3.3$.
The global survey of star clusters in the Milky Way (MWSC) is a comprehensive list of 3061 objects that provides, among other parameters, distances to clusters based on isochrone fitting. The Tycho-Gaia Astrometric Solution (TGAS) catalogue, which is
Young open clusters are ideal laboratories to understand star formation process. We present deep UBV I and Halpha photometry for the young open cluster IC 1590 in the center of the H II region NGC 281. Early-type members are selected from UBV photome
Open clusters have long been used to gain insights into the structure, composition, and evolution of the Galaxy. With the large amount of stellar data available for many clusters in the Gaia era, new techniques must be developed for analyzing open cl
Photometric variability of chemically peculiar (CP) stars of the upper main sequence is closely connected to their local stellar magnetic field and their rotational period. Long term investigations, as presented here, help us to identify possible ste
In this paper we analyse the evolutionary status and properties of the old open cluster NGC 2355, located in the Galactic anticentre direction, as a part of the long term programme BOCCE. NGC 2355 was observed with LBC@LBT using the Bessel $B$, $V$,