ترغب بنشر مسار تعليمي؟ اضغط هنا

Near-infrared spectroscopic observations of massive young stellar object candidates in the Central Molecular Zone

99   0   0.0 ( 0 )
 نشر من قبل Govind Nandakumar
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a spectroscopic follow-up of photometrically-selected young stellar object (YSO) candidates in the Central Molecular Zone of the Galactic center. Our goal is to quantify the contamination of this YSO sample by reddened giant stars with circumstellar envelopes and to determine the star formation rate in the CMZ. We obtained KMOS low-resolution near-infrared spectra (R ~4000) between 2.0 and 2.5 um of sources, many of them previously identified, by mid-infrared photometric criteria, as massive YSOs in the Galactic center. Our final sample consists of 91 stars with good signal-to-noise ratio. We separate YSOs from cool late-type stars based on spectral features of CO and Br_gamma at 2.3 um and 2.16 um respectively. We make use of SED model fits to the observed photometric data points from 1.25 to 24 um in order to estimate approximate masses for the YSOs. Using the spectroscopically identified YSOs in our sample, we confirm that existing colour-colour diagrams and colour-magnitude diagrams are unable to efficiently separate YSOs and cool late-type stars. In addition, we define a new colour-colour criterion that separates YSOs from cool late-type stars in the H-Ks vs H-[8.0] diagram. We use this new criterion to identify YSO candidates in the |l| < 1.5, |b|<0.5 degree region and use model SED fits to estimate their approximate masses. By assuming an appropriate initial mass function (IMF) and extrapolating the stellar IMF down to lower masses, we determine a star formation rate (SFR) of ~0.046 +/- 0.026 Msun/yr assuming an average age of 0.75 +/- 0.25 Myr for the YSOs. This value is lower than estimates found using the YSO counting method in the literature. Our SFR estimate in the CMZ agrees with the previous estimates from different methods and reaffirms that star formation in the CMZ is proceeding at a lower rate than predicted by various star forming models.



قيم البحث

اقرأ أيضاً

Previous radio observations revealed widespread gas-phase methanol (CH$_3$OH) in the Central Molecular Zone (CMZ) at the Galactic center (GC), but its origin remains unclear. Here, we report the discovery of CH$_3$OH ice toward a star in the CMZ, bas ed on a Subaru $3.4$-$4.0 mu$m spectrum, aided by NASA/IRTF $L$ imaging and $2$-$4 mu$m spectra. The star lies $sim8000$ au away in projection from a massive young stellar object (MYSO). Its observed high CH$_3$OH ice abundance ($17%pm3%$ relative to H$_2$O ice) suggests that the $3.535 mu$m CH$_3$OH ice absorption likely arises in the MYSOs extended envelope. However, it is also possible that CH$_3$OH ice forms with a higher abundance in dense clouds within the CMZ, compared to within the disk. Either way, our result implies that gas-phase CH$_3$OH in the CMZ can be largely produced by desorption from icy grains. The high solid CH$_3$OH abundance confirms the prominent $15.4 mu$m shoulder absorption observed toward GC MYSOs arises from CO$_2$ ice mixed with CH$_3$OH.
K-band spectra of young stellar candidates in four southern hemisphere clusters have been obtained with the near-infrared spectrograph GNIRS in Gemini South. The clusters are associated with IRAS sources that have colours characteristic of ultracompa ct HII regions. Spectral types were obtained by comparison of the observed spectra with those of a NIR library; the results include the spectral classification of nine massive stars and seven objects confirmed as background late-type stars. Two of the studied sources have K-band spectra compatible with those characteristic of very hot stars, as inferred from the presence of Civ, Niii, and Nv emission lines at 2.078 micron, 2.116 micron, and 2.100 micron respectively. One of them, I16177 IRS1, has a K-band spectrum similar to that of Cyg OB2 7, an O3If* supergiant star. The nebular K-band spectrum of the associated UC Hii region shows the s-process [Kriii] and [Seiv] high excitation emission lines, previously identified only in planetary nebula. One young stellar object (YSO) was found in each cluster, associated with either the main IRAS source or a nearby resolved MSX component, confirming the results obtained from previous NIR photometric surveys. The distances to the stars were derived from their spectral types and previously determined JHK magnitudes; they agree well with the values obtained from the kinematic method, except in the case of IRAS15408-5356, for which the spectroscopic distance is about a factor two smaller than the kinematic value.
We observe 1.3~mm spectral lines at 2000~AU resolution toward four massive molecular clouds in the Central Molecular Zone of the Galaxy to investigate their star formation activities. We focus on several potential shock tracers that are usually abund ant in protostellar outflows, including SiO, SO, CH$_3$OH, H$_2$CO, HC$_3$N, and HNCO. We identify 43 protostellar outflows, including 37 highly likely ones and 6 candidates. The outflows are found toward both known high-mass star forming cores and less massive, seemingly quiescent cores, while 791 out of the 834 cores identified based on the continuum do not have detected outflows. The outflow masses range from less than 1~$M_odot$ to a few tens of $M_odot$, with typical uncertainties of a factor of 70. We do not find evidence of disagreement between relative molecular abundances in these outflows and in nearby analogs such as the well-studied L1157 and NGC7538S outflows. The results suggest that i) protostellar accretion disks driving outflows ubiquitously exist in the CMZ environment, ii) the large fraction of candidate starless cores is expected if these clouds are at very early evolutionary phases, with a caveat on the potential incompleteness of the outflows, iii) high-mass and low-mass star formation is ongoing simultaneously in these clouds, and iv) current data do not show evidence of difference between the shock chemistry in the outflows that determines the molecular abundances in the CMZ environment and in nearby clouds.
We have carried out near-infrared polarimetry toward the boundary of the Central Molecular Zone, in the field of (-1.4 deg $lesssim l lesssim$ -0.3 deg and 1.0 deg $lesssim l lesssim$ 2.9 deg, $|b|lesssim$ 0.1 deg), using the near-infrared polarimetr ic camera SIRPOL on the 1.4 m Infrared Survey Facility telescope. We have selected 112 intrinsically polarized sources on the basis of the estimate of interstellar polarization on Stokes $Q/I-U/I$ planes. The selected sources are brighter than $K_S=14.5$ mag and have polarimetric uncertainty $delta P<1,%$. Ten of these distinctive polarized sources are fit well with spectral energy distributions of young stellar objects when using the photometry in the archive of the Spitzer Space Telescope mid-infrared data. However, many sources have spectral energy distributions of normal stars suffering heavy interstellar extinction; these might be stars behind dark clouds. Due to the small number of distinctive polarized sources and candidates of young stellar object, we cannot judge if there is a decline of them outside the Central Molecular Zone. Many of massive candidates of young stellar object in the literature have only small intrinsic polarization. This might suggest that their masses are 4-15 M$_{{rm sun}}$, whose intrinsic polarization has been expected to be small.
In contrast to most other galaxies, star-formation rates in the Milky Way can be estimated directly from Young Stellar Objects (YSOs). In the Central Molecular Zone (CMZ) the star-formation rate calculated from the number of YSOs with 24 microns emis sion is up to order of magnitude higher than the value estimated from methods based on diffuse emission (such as free-free emission). Whether this effect is real or whether it indicates problems with either or both star formation rate measures is not currently known. In this paper, we investigate whether estimates based on YSOs could be heavily contaminated by more evolved objects such as main-sequence stars. We present radiative transfer models of YSOs and of main-sequence stars in a constant ambient medium which show that the main-sequence objects can indeed mimic YSOs at 24 microns. However, we show that in some cases the main-sequence models can be marginally resolved at 24 microns, whereas the YSO models are always unresolved. Based on the fraction of resolved MIPS 24 microns sources in the sample of YSOs previously used to compute the star formation rate, we estimate the fraction of misclassified YSOs to be at least 63%, which suggests that the star-formation rate previously determined from YSOs is likely to be at least a factor of three too high.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا