ﻻ يوجد ملخص باللغة العربية
We study the topological structure of $SU(3)$ lattice gluodynamics by cluster analysis. This methodological study is meant as preparation for full QCD. The topological charge density is becoming visible in the process of overimproved gradient flow, which is monitored by means of the the Inverse Participation Ratio (IPR). The flow is stopped at the moment when calorons dissociate into dyons due to the overimproved character of the underlying action. This gives the possibility to simultaneously detect all three dyonic constituents of KvBLL calorons in the gluonic field. The behaviour of the average Polyakov loop under (overimproved) gradient flow could be also (as its value) a diagnostics for the actual phase the configuration is belonging to. Timelike Abelian monopole currents and specific patterns of the local Polyakov loop are correlated with the topological clusters.The spectrum of reconstructed cluster charges $Q_{cl}$ corresponds to the phases. It is scattered around $Q_{cl} approx pm 1/3$ in the confined phase, whereas it is $Q_{cl} approx pm 0.5 div 0.7$ for heavy dyons and $|Q_{cl}| < 0.3$ for light dyons in the deconfined phase. Heavy dyons are increasingly suppressed with increasing temperature. The paper is dedicated to the memory of Michael Mueller-Preussker who was a member of our research group for more than twenty years.
In this paper we study the shear viscosity temperature dependence of $SU(3)$--gluodynamics within lattice simulation. To do so, we measure the correlation functions of energy-momentum tensor in the range of temperatures $T/T_cin [0.9, 1.5]$. To extra
Topological objects of $SU(3)$ gluodynamics are studied at the infrared scale near the transition temperature with the help of zero and near-zero modes of the overlap Dirac operator. We construct UV filtered topological charge densities corresponding to thr
We present recent results of the Landau gauge gluon and ghost propagators in SU(3) pure gauge theory at Wilson beta=5.7 for lattice sizes up to 80^4 corresponding to physical volumes up to (13.2 fm)^4. In particular, we focus on finite-volume and Gri
The liquid droplet formula is applied to an analysis of the properties of geometrical (anti)clusters formed in SU(2) gluodynamics by the Polyakov loops of the same sign. Using this approach, we explain the phase transition in SU(2) gluodynamics as a
By cooling of equilibrium lattice fields at finite temperature in SU(2) gauge theory it has been shown that topological objects (calorons) observed on the lattice in the confined phase possess a dyonic substructure which becomes visible under certain