ترغب بنشر مسار تعليمي؟ اضغط هنا

Benchmarking theoretical formalisms for $(p,pn)$ reactions: the $^{15}$C($p,pn$)$^{14}$C case

79   0   0.0 ( 0 )
 نشر من قبل Kazuki Yoshida
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

[Background] Proton-induced knockout reactions of the form $(p,pN)$ have experienced a renewed interest in recent years due to the possibility of performing these measurements with rare isotopes, using inverse kinematics. Several theoretical models are being used for the interpretation of these new data, such as the distorted-wave impulse approximation (DWIA), the transition amplitude formulation of the Faddeev equations due to Alt, Grassberger and Sandhas (FAGS) and, more recently, a coupled-channels method here referred to as transfer-to-the-continuum (TC). [Purpose] Our goal is to compare the momentum distributions calculated with the DWIA and TC models for the same reactions, using whenever possible the same inputs (e.g. distorting potential). A comparison with already published results for the FAGS formalism is performed as well. [Method] We choose the $^{15}$C($p$,$pn$)$^{14}$C reaction at an incident energy of 420 MeV/u, which has been previously studied with the FAGS formalism. The knocked-out neutron is assumed to be in a $2s$ single-particle orbital. Longitudinal and transverse momentum distributions are calculated for different assumed separation energies. [Results] For all cases considered, we find a very good agreement between DWIA and TC results. The energy dependence of the distorting optical potentials is found to affect in a modest way the shape and magnitude of the momentum distributions. Moreover, when relativistic kinematics corrections are omitted, our calculations reproduce remarkably well the FAGS result. [Conclusions] The results found in this work provide confidence on the consistency and accuracy of the DWIA and TC models for analyzing momentum distributions for $(p,pn)$ reactions at intermediate energies.



قيم البحث

اقرأ أيضاً

Nucleon-knockout reactions on proton targets (p, pN ) have experienced a renewed interest due to the availability of inverse-kinematics experiment with exotic nuclei. Various theoretical descriptions have been used to describe these reactions, such a s the Distorted-Wave Impulse Approximation (DWIA), the Faddeev-type formalism and the Transfer to the Continuum method. Our goal is to benchmark the observables computed with the Faddeev and Transfer to the Continuum formalisms in the intermediate energy regime relevant for the experimental (p, pn) and (p, 2p) studies. In this paper, we analyze the 11 Be(p,pn)10Be reaction for different beam energies, binding energies and orbital quantum numbers with both formalisms to assess their agreement for different observables. We obtain a good agreement in all cases considered, within 10%, when the input potentials are taken consistently and realistically.
Background: Proton-induced nucleon knockout $(p,pN)$ reactions have been successfully used to study the single-particle nature of stable nuclei in normal kinematics with the distorted-wave impulse approximation (DWIA) framework. Recently, these react ions have been applied to rare-isotope beams at intermediate energies in inverse kinematics to study the quenching of spectroscopic factors. Purpose: Our goal is to investigate the effects of various corrections and uncertainties within the standard DWIA formalism on the $(p,pN)$ cross sections. The consistency of the extracted reduction factors between DWIA and other methods is also evaluated. Method: We analyze the $(p,2p)$ and $(p,pn)$ reactions data measured at the R$^3$B/LAND setup at GSI for carbon, nitrogen, and oxygen isotopes in the incident energy range of 300--450 MeV/u. Cross sections and reduction factors are calculated by using the DWIA method. The transverse momentum distribution of the $^{12}$C($p$,$2p$)$^{11}$B reaction is also investigated. Results: We have found that including the nonlocality corrections and the Mo ller factor affects the cross sections considerably. The proton-neutron asymmetry dependence of reduction factors extracted by the DWIA calculation is very weak and consistent with those given by other reaction methods and textit{ab initio} structure calculations. Conclusions: The results found in this work provide a detailed investigation of the DWIA method for $(p,pN)$ reactions at intermediate energies. They also suggest that some higher-order effects, which is essential for an accurate cross-section description at large recoil momentum, is missing in the current DWIA and other reaction models.
The parallel momentum distribution (PMD) of the residual nuclei of the 14O(p,pn)13O and 14O(p,2p)13N reactions at 100 and 200 MeV/nucleon in inverse kinematics is investigated with the framework of the distorted wave impulse approximation. The PMD sh ows an asymmetric shape characterized by a steep fall-off on the high momentum side and a long-ranged tail on the low momentum side. The former is found to be due to the phase volume effect reflecting the energy and momentum conservation, and the latter is to the momentum shift of the outgoing two nucleons inside an attractive potential caused by the residual nucleus. Dependence of these effects on the nucleon separation energy of the projectile and the incident energy is also discussed.
The cross sections for the reactions pp -> p Lambda^0K^+ and pn -> n Lambda^0K^+ are calculated near threshold of the final states. The theoretical ratio of the cross sections R = sigma(pn -> n Lambda^0K^+)/ sigma(pp ->pLambda^0K^+) = 3 shows the e nhancement of the pn interaction with respect to the pp interaction near threshold of the strangeness production N Lambda^0K^+. Such an enhancement is caused by the contribution of the np interaction in the isospin-singlet state, which is stronger than the $pn$ interaction in the isospin-triplet state. For the confirmation of this result we calculate the cross sections for the reactions pp -> pp pi^0, pi^0 p -> Lambda^0 K^+ and pi^-p -> Lambda^0 K^0 near threshold of the final states. The theoretical cross sections agree well with the experimental data.
118 - H. Goto , T. Toriyama , T. Konishi 2015
Density-functional-theory-based electronic structure calculations are made to consider the novel electronic states of Ru-pnictides RuP and RuAs where the intriguing phase transitions and superconductivity under doping of Rh have been reported. We fin d that there appear nearly degenerate flat bands just at the Fermi level in the high-temperature metallic phase of RuP and RuAs; the flat-band states come mainly from the $4d_{xy}$ orbitals of Ru ions and the Rh doping shifts the Fermi level just above the flat bands. The splitting of the flat bands caused by their electronic instability may then be responsible for the observed phase transition to the nonmagnetic insulating phase at low temperatures. We also find that the band structure calculated for RuSb resembles that of the doped RuP and RuAs, which is consistent with experiment where superconductivity occurs in RuSb without Rh doping.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا