ﻻ يوجد ملخص باللغة العربية
We formulate a well-posedness and approximation theory for a class of generalised saddle point problems. In this way we develop an approach to a class of fourth order elliptic partial differential equations using the idea of splitting into coupled second order equations. Our main motivation is to treat certain fourth order surface equations arising in the modelling of biomembranes but the approach may be applied more generally. In particular, we are interested in equations with non-smooth right hand sides and operators which have non-trivial kernels.The theory for well posedness and approximation is presented in an abstract setting. Several examples are described together with some numerical experiments.
We formulate a well-posedness and approximation theory for a class of generalised saddle point problems with a specific form of constraints. In this way we develop an approach to a class of fourth order elliptic partial differential equations with po
For a class of fourth order gradient flow problems, integration of the scalar auxiliary variable (SAV) time discretization with the penalty-free discontinuous Galerkin (DG) spatial discretization leads to SAV-DG schemes. These schemes are linear and
This work focuses on the development of a new class of high-order accurate methods for multirate time integration of systems of ordinary differential equations. The proposed methods are based on a specific subset of explicit one-step exponential inte
The aim of this paper is to develop fast second-order accurate difference schemes for solving one- and two-dimensional time distributed-order and Riesz space fractional diffusion equations. We adopt the same measures for one- and two-dimensional prob
We present a second-order-in-time finite difference scheme for the Cahn-Hilliard-Hele-Shaw equations. This numerical method is uniquely solvable and unconditionally energy stable. At each time step, this scheme leads to a system of nonlinear equation