ترغب بنشر مسار تعليمي؟ اضغط هنا

Variance uncertainty relations without covariances for three and four observables

89   0   0.0 ( 0 )
 نشر من قبل Victor Dodonov
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English
 تأليف V. V. Dodonov




اسأل ChatGPT حول البحث

New sum and product uncertainty relations, containing variances of three or four observables, but not containing explicitly their covariances, are derived. One of consequences is the new inequality, giving a nonzero lower bound for the product of two variances in the case of zero mean value of the commutator between the related operators. Moreover, explicit examples show that in some cases this new bound can be better than the known Robertson--Schrodinger one.

قيم البحث

اقرأ أيضاً

85 - Bin Chen , Shao-Ming Fei 2015
We formulate uncertainty relations for arbitrary $N$ observables. Two uncertainty inequalities are presented in terms of the sum of variances and standard deviations, respectively. The lower bounds of the corresponding sum uncertainty relations are e xplicitly derived. These bounds are shown to be tighter than the ones such as derived from the uncertainty inequality for two observables [Phys. Rev. Lett. 113, 260401 (2014)]. Detailed examples are presented to compare among our results with some existing ones.
We formulate the conditional-variance uncertainty relations for general qubit systems and arbitrary observables via the inferred uncertainty relations. We find that the lower bounds of these conditional-variance uncertainty relations can be written i n terms of entanglement measures including concurrence, $G$ function, quantum discord quantified via local quantum uncertainty in different scenarios. We show that the entanglement measures reduce these bounds, except quantum discord which increases them. Our analysis shows that these correlations of quantumness measures play different roles in determining the lower bounds for the sum and product conditional variance uncertainty relations. We also explore the violation of local uncertainty relations in this context and in an interference experiment.
78 - V. V. Dodonov 2017
A new lower boundary for the product of variances of two observables is obtained in the case, when these observables are entangled with the third one. This boundary can be higher than the Robertson--Schrodinger one. The special case of the two-dimens ional pure Gaussian state is considered as an example.
Being one of the centroidal concepts in quantum theory, the fundamental constraint imposed by Heisenberg uncertainty relations has always been a subject of immense attention and challenging in the context of joint measurements of general quantum mech anical observables. In particular, the recent extension of the original uncertainty relations has grabbed a distinct research focus and set a new ascendent target in quantum mechanics and quantum information processing. In the present work we explore the joint measurements of three incompatible observables, following the basic idea of a newly proposed error trade-off relation. In comparison to the counterpart of two incompatible observables, the joint measurements of three incompatible observables are more complex and of more primal interest in understanding quantum mechanical measurements. Attributed to the pristine idea proposed by Heisenberg in 1927, we develop the error trade-off relations for compatible observables to categorically approximate the three incompatible observables. Implementing these relations we demonstrate the first experimental witness of the joint measurements for three incompatible observables using a single ultracold $^{40}Ca^{+}$ ion in a harmonic potential. We anticipate that our inquisition would be of vital importance for quantum precision measurement and other allied quantum information technologies.
Measurement uncertainty relations are lower bounds on the errors of any approximate joint measurement of two or more quantum observables. The aim of this paper is to provide methods to compute optimal bounds of this type. The basic method is semidefi nite programming, which we apply to arbitrary finite collections of projective observables on a finite dimensional Hilbert space. The quantification of errors is based on an arbitrary cost function, which assigns a penalty to getting result $x$ rather than y, for any pair (x,y). This induces a notion of optimal transport cost for a pair of probability distributions, and we include an appendix with a short summary of optimal transport theory as needed in our context. There are then different ways to form an overall figure of merit from the comparison of distributions. We consider three, which are related to different physical testing scenarios. The most thorough test compares the transport distances between the marginals of a joint measurement and the reference observables for every input state. Less demanding is a test just on the states for which a true value is known in the sense that the reference observable yields a definite outcome. Finally, we can measure a deviation as a single expectation value by comparing the two observables on the two parts of a maximally entangled state. All three error quantities have the property that they vanish if and only if the tested observable is equal to the reference. The theory is illustrated with some characteristic examples.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا