ﻻ يوجد ملخص باللغة العربية
The analysis of the secondary Bjerknes force between two bubbles suggests that this force is analogous to the electrostatic forces. The same analogy is suggested by the existence of a scattering cross section of an acoustic wave on a bubble. Our paper brings new arguments in support of this analogy. The study which we perform is dedicated to the acoustic force and to the scattering cross section at resonance in order to highlight their angular frequency independence of the inductor wave. Also, our study reveals that the angular frequency and the amplitude of the induction pressure wave are not related. Highlighting this analogy will allow us a better understanding of the electrostatic interaction if the electron is modeled as an oscillating bubble in the vacuum.
We consider the theory of spinor fields written in polar form, that is the form in which the spinor components are given in terms of a module times a complex unitary phase respecting Lorentz covariance. In this formalism, spinors can be treated in th
At zero magnetic field we have observed an electromagnetic radiation from superconductors subjected by a transverse elastic wave. This radiation has an inertial origin, and is a manifestation of the acoustic Stewart-Tolman effect. The effect is used
In this report, we demonstrate a new principle to improve the resolution of the acoustic microscopy, which is based on the sub-wavelength focusing of acoustic wave passing through an acoustically transparent mesoscale particle. In the principle, the
Arbitrary waves incident on a solid embedded nanoparticle are studied. The acoustic vibrational frequencies are shown to correspond to the poles of the scattering cross section in the complex frequency plane. The location of the poles is unchanged ev
We demonstrate that self-interacting dark matter models with interactions mediated by light particles can have significant deviations in the matter power-spectrum and detailed structure of galactic halos when compared to a standard cold dark matter s