ﻻ يوجد ملخص باللغة العربية
We study the origin of the interstellar object 1I/2017 U1 Oumuamua by juxtaposing estimates based on the observations with simulations. We speculate that objects like Oumuamua are formed in the debris disc as left over from the star and planet formation process, and subsequently liberated. The liberation process is mediated either by interaction with other stars in the parental star-cluster, by resonant interactions within the planetesimal disc or by the relatively sudden mass loss when the host star becomes a compact object. Integrating backward in time in the Galactic potential together with stars from the Gaia-TGAS catalogue we find that about 1.3Myr ago Oumuamua passed the nearby star HIP 17288 within a mean distance of $1.3$pc. By comparing nearby observed L-dwarfs with simulations of the Galaxy we conclude that the kinematics of Oumuamua is consistent with relatively young objects of $1.1$--$1.7$Gyr. We just met Oumuamua by chance, and with a derived mean Galactic density of $sim 3times 10^{5}$ similarly sized objects within 100,au from the Sun or $sim 10^{14}$ per cubic parsec we expect about 2 to 12 such visitors per year within 1au from the Sun.
The initial Galactic velocity vector for the recently discovered hyperbolic asteroid 1I/Oumuamua (A/2017 U1) is calculated for before its encounter with our solar system. The latest orbit (JPL-13) shows that Oumuamua has eccentricity > 1 at 944sigma,
The recently discovered minor body 1I/2017 U1 (`Oumuamua) is the first known object in our Solar System that is not bound by the Suns gravity. Its hyperbolic orbit (eccentricity greater than unity) strongly suggests that it originated outside our Sol
We present observations of the interstellar interloper 1I/2017 U1 (Oumuamua) taken during its 2017 October flyby of Earth. The optical colors B-V = 0.70$pm$0.06, V-R = 0.45$pm$0.05, overlap those of the D-type Jovian Trojan asteroids and are incompat
1I/`Oumuamua is the first confirmed interstellar body in our Solar System. Here we report on observations of `Oumuamua made with the Spitzer Space Telescope on 2017 November 21--22 (UT). We integrated for 30.2~hours at 4.5 micron (IRAC channel 2). We
1I/Oumuamua is the first interstellar object observed passing through the Solar System. Understanding the nature of these objects will provide crucial information about the formation and evolution of planetary systems, and the chemodynamical evolutio