ترغب بنشر مسار تعليمي؟ اضغط هنا

Fast Distributed Approximation for TAP and 2-Edge-Connectivity

239   0   0.0 ( 0 )
 نشر من قبل Michal Dory
 تاريخ النشر 2017
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The tree augmentation problem (TAP) is a fundamental network design problem, in which the input is a graph $G$ and a spanning tree $T$ for it, and the goal is to augment $T$ with a minimum set of edges $Aug$ from $G$, such that $T cup Aug$ is 2-edge-connected. TAP has been widely studied in the sequential setting. The best known approximation ratio of 2 for the weighted case dates back to the work of Frederickson and J{a}J{a}, SICOMP 1981. Recently, a 3/2-approximation was given for unweighted TAP by Kortsarz and Nutov, TALG 2016. Recent breakthroughs give an approximation of 1.458 for unweighted TAP [Grandoni et al., STOC 2018], and approximations better than 2 for bounded weights [Adjiashvili, SODA 2017; Fiorini et al., SODA 2018]. In this paper, we provide the first fast distributed approximations for TAP. We present a distributed $2$-approximation for weighted TAP which completes in $O(h)$ rounds, where $h$ is the height of $T$. When $h$ is large, we show a much faster 4-approximation algorithm for the unweighted case, completing in $O(D+sqrt{n}log^*{n})$ rounds, where $n$ is the number of vertices and $D$ is the diameter of $G$. Immediate consequences of our results are an $O(D)$-round 2-approximation algorithm for the minimum size 2-edge-connected spanning subgraph, which significantly improves upon the running time of previous approximation algorithms, and an $O(h_{MST}+sqrt{n}log^{*}{n})$-round 3-approximation algorithm for the weighted case, where $h_{MST}$ is the height of the MST of the graph. Additional applications are algorithms for verifying 2-edge-connectivity and for augmenting the connectivity of any connected spanning subgraph to 2. Finally, we complement our study with proving lower bounds for distributed approximations of TAP.

قيم البحث

اقرأ أيضاً

We provide a simple new randomized contraction approach to the global minimum cut problem for simple undirected graphs. The contractions exploit 2-out edge sampling from each vertex rather than the standard uniform edge sampling. We demonstrate the p ower of our new approach by obtaining better algorithms for sequential, distributed, and parallel models of computation. Our end results include the following randomized algorithms for computing edge connectivity with high probability: -- Two sequential algorithms with complexities $O(m log n)$ and $O(m+n log^3 n)$. These improve on a long line of developments including a celebrated $O(m log^3 n)$ algorithm of Karger [STOC96] and the state of the art $O(m log^2 n (loglog n)^2)$ algorithm of Henzinger et al. [SODA17]. Moreover, our $O(m+n log^3 n)$ algorithm is optimal whenever $m = Omega(n log^3 n)$. Within our new time bounds, whp, we can also construct the cactus representation of all minimal cuts. -- An $~O(n^{0.8} D^{0.2} + n^{0.9})$ round distributed algorithm, where D denotes the graph diameter. This improves substantially on a recent breakthrough of Daga et al. [STOC19], which achieved a round complexity of $~O(n^{1-1/353}D^{1/353} + n^{1-1/706})$, hence providing the first sublinear distributed algorithm for exactly computing the edge connectivity. -- The first $O(1)$ round algorithm for the massively parallel computation setting with linear memory per machine.
134 - Michal Dory 2018
In the minimum $k$-edge-connected spanning subgraph ($k$-ECSS) problem the goal is to find the minimum weight subgraph resistant to up to $k-1$ edge failures. This is a central problem in network design, and a natural generalization of the minimum sp anning tree (MST) problem. While the MST problem has been studied extensively by the distributed computing community, for $k geq 2$ less is known in the distributed setting. In this paper, we present fast randomized distributed approximation algorithms for $k$-ECSS in the CONGEST model. Our first contribution is an $widetilde{O}(D + sqrt{n})$-round $O(log{n})$-approximation for 2-ECSS, for a graph with $n$ vertices and diameter $D$. The time complexity of our algorithm is almost tight and almost matches the time complexity of the MST problem. For larger constant values of $k$ we give an $widetilde{O}(n)$-round $O(log{n})$-approximation. Additionally, in the special case of unweighted 3-ECSS we show how to improve the time complexity to $O(D log^3{n})$ rounds. All our results significantly improve the time complexity of previous algorithms.
We address the fundamental network design problem of constructing approximate minimum spanners. Our contributions are for the distributed setting, providing both algorithmic and hardness results. Our main hardness result shows that an $alpha$-appro ximation for the minimum directed $k$-spanner problem for $k geq 5$ requires $Omega(n /sqrt{alpha}log{n})$ rounds using deterministic algorithms or $Omega(sqrt{n }/sqrt{alpha}log{n})$ rounds using randomized ones, in the CONGEST model of distributed computing. Combined with the constant-round $O(n^{epsilon})$-approximation algorithm in the LOCAL model of [Barenboim, Elkin and Gavoille, 2016], as well as a polylog-round $(1+epsilon)$-approximation algorithm in the LOCAL model that we show here, our lower bounds for the CONGEST model imply a strict separation between the LOCAL and CONGEST models. Notably, to the best of our knowledge, this is the first separation between these models for a local approximation problem. Similarly, a separation between the directed and undirected cases is implied. We also prove a nearly-linear lower bound for the minimum weighted $k$-spanner problem for $k geq 4$, and we show lower bounds for the weighted 2-spanner problem. On the algorithmic side, apart from the aforementioned $(1+epsilon)$-approximation algorithm for minimum $k$-spanners, our main contribution is a new distributed construction of minimum 2-spanners that uses only polynomial local computations. Our algorithm has a guaranteed approximation ratio of $O(log(m/n))$ for a graph with $n$ vertices and $m$ edges, which matches the best known ratio for polynomial time sequential algorithms [Kortsarz and Peleg, 1994], and is tight if we restrict ourselves to polynomial local computations. Our approach allows us to extend our algorithm to work also for the directed, weighted, and client-server variants of the problem.
In this paper we give fast distributed graph algorithms for detecting and listing small subgraphs, and for computing or approximating the girth. Our algorithms improve upon the state of the art by polynomial factors, and for girth, we obtain an const ant-time algorithm for additive +1 approximation in the Congested Clique, and the first parametrized algorithm for exact computation in CONGEST. In the Congested Clique, we develop a technique for learning small neighborhoods, and apply it to obtain an $O(1)$-round algorithm that computes the girth with only an additive +1 error. Next, we introduce a new technique (the partition tree technique) allowing for efficiently and deterministically listing all copies of any subgraph, improving upon the state-of the-art for non-dense graphs. We give two applications of this technique: First we show that for constant $k$, $C_{2k}$-detection can be solved in $O(1)$ rounds in the Congested Clique, improving on prior work which used matrix multiplication and had polynomial round complexity. Second, we show that in triangle-free graphs, the girth can be exactly computed in time polynomially faster than the best known bounds for general graphs. In CONGEST, we describe a new approach for finding cycles, and apply it in two ways: first we show a fast parametrized algorithm for girth with round complexity $tilde{O}(min(gcdot n^{1-1/Theta(g)},n))$ for any girth $g$; and second, we show how to find small even-length cycles $C_{2k}$ for $k = 3,4,5$ in $O(n^{1-1/k})$ rounds, which is a polynomial improvement upon the previous running times. Finally, using our improved $C_6$-freeness algorithm and the barrier on proving lower bounds on triangle-freeness of Eden et al., we show that improving the current $tildeOmega(sqrt{n})$ lower bound for $C_6$-freeness of Korhonen et al. by any polynomial factor would imply strong circuit complexity lower bounds.
We consider the distributed version of the Multiple Knapsack Problem (MKP), where $m$ items are to be distributed amongst $n$ processors, each with a knapsack. We propose different distributed approximation algorithms with a tradeoff between time and message complexities. The algorithms are based on the greedy approach of assigning the best item to the knapsack with the largest capacity. These algorithms obtain a solution with a bound of $frac{1}{n+1}$ times the optimum solution, with either $mathcal{O}left(mlog nright)$ time and $mathcal{O}left(m nright)$ messages, or $mathcal{O}left(mright)$ time and $mathcal{O}left(mn^{2}right)$ messages.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا