ترغب بنشر مسار تعليمي؟ اضغط هنا

Flexible Bayesian Dynamic Modeling of Correlation and Covariance Matrices

112   0   0.0 ( 0 )
 نشر من قبل Shiwei Lan
 تاريخ النشر 2017
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

Modeling correlation (and covariance) matrices can be challenging due to the positive-definiteness constraint and potential high-dimensionality. Our approach is to decompose the covariance matrix into the correlation and variance matrices and propose a novel Bayesian framework based on modeling the correlations as products of unit vectors. By specifying a wide range of distributions on a sphere (e.g. the squared-Dirichlet distribution), the proposed approach induces flexible prior distributions for covariance matrices (that go beyond the commonly used inverse-Wishart prior). For modeling real-life spatio-temporal processes with complex dependence structures, we extend our method to dynamic cases and introduce unit-vector Gaussian process priors in order to capture the evolution of correlation among components of a multivariate time series. To handle the intractability of the resulting posterior, we introduce the adaptive $Delta$-Spherical Hamiltonian Monte Carlo. We demonstrate the validity and flexibility of our proposed framework in a simulation study of periodic processes and an analysis of rats local field potential activity in a complex sequence memory task.

قيم البحث

اقرأ أيضاً

We propose a Bayesian methodology for estimating spiked covariance matrices with jointly sparse structure in high dimensions. The spiked covariance matrix is reparametrized in terms of the latent factor model, where the loading matrix is equipped wit h a novel matrix spike-and-slab LASSO prior, which is a continuous shrinkage prior for modeling jointly sparse matrices. We establish the rate-optimal posterior contraction for the covariance matrix with respect to the operator norm as well as that for the principal subspace with respect to the projection operator norm loss. We also study the posterior contraction rate of the principal subspace with respect to the two-to-infinity norm loss, a novel loss function measuring the distance between subspaces that is able to capture element-wise eigenvector perturbations. We show that the posterior contraction rate with respect to the two-to-infinity norm loss is tighter than that with respect to the routinely used projection operator norm loss under certain low-rank and bounded coherence conditions. In addition, a point estimator for the principal subspace is proposed with the rate-optimal risk bound with respect to the projection operator norm loss. These results are based on a collection of concentration and large deviation inequalities for the matrix spike-and-slab LASSO prior. The numerical performance of the proposed methodology is assessed through synthetic examples and the analysis of a real-world face data example.
The article develops marginal models for multivariate longitudinal responses. Overall, the model consists of five regression submodels, one for the mean and four for the covariance matrix, with the latter resulting by considering various matrix decom positions. The decompositions that we employ are intuitive, easy to understand, and they do not rely on any assumptions such as the presence of an ordering among the multivariate responses. The regression submodels are semiparametric, with unknown functions represented by basis function expansions. We use spike-slap priors for the regression coefficients to achieve variable selection and function regularization, and to obtain parameter estimates that account for model uncertainty. An efficient Markov chain Monte Carlo algorithm for posterior sampling is developed. The simulation studies presented investigate the effects of priors on posteriors, the gains that one may have when considering multivariate longitudinal analyses instead of univariate ones, and whether these gains can counteract the negative effects of missing data. We apply the methods on a highly unbalanced longitudinal dataset with four responses observed over of period of 20 years
89 - Mahsa Nadifar 2021
Many of the data, particularly in medicine and disease mapping are count. Indeed, the under or overdispersion problem in count data distrusts the performance of the classical Poisson model. For taking into account this problem, in this paper, we intr oduce a new Bayesian structured additive regression model, called gamma count, with enough flexibility in modeling dispersion. Setting convenient prior distributions on the model parameters is a momentous issue in Bayesian statistics that characterize the nature of our uncertainty parameters. Relying on a recently proposed class of penalized complexity priors, motivated from a general set of construction principles, we derive the prior structure. The model can be formulated as a latent Gaussian model, and consequently, we can carry out the fast computation by using the integrated nested Laplace approximation method. We investigate the proposed methodology simulation study. Different expropriate prior distribution are examined to provide reasonable sensitivity analysis. To explain the applicability of the proposed model, we analyzed two real-world data sets related to the larynx mortality cancer in Germany and the handball champions league.
181 - Xi Chen , Kaoru Irie , David Banks 2016
Traffic flow count data in networks arise in many applications, such as automobile or aviation transportation, certain directed social network contexts, and Internet studies. Using an example of Internet browser traffic flow through site-segments of an international news website, we present Bayesian analyses of two linked classes of models which, in tandem, allow fast, scalable and interpretable Bayesian inference. We first develop flexible state-space models for streaming count data, able to adaptively characterize and quantify network dynamics efficiently in real-time. We then use these models as emulators of more structured, time-varying gravity models that allow formal dissection of network dynamics. This yields interpretable inferences on traffic flow characteristics, and on dynamics in interactions among network nodes. Bayesian monitoring theory defines a strategy for sequential model assessment and adaptation in cases when network flow data deviates from model-based predictions. Exploratory and sequential monitoring analyses of evolving traffic on a network of web site-segments in e-commerce demonstrate the utility of this coupled Bayesian emulation approach to analysis of streaming network count data.
We consider the problem of estimating high-dimensional covariance matrices of a particular structure, which is a summation of low rank and sparse matrices. This covariance structure has a wide range of applications including factor analysis and rando m effects models. We propose a Bayesian method of estimating the covariance matrices by representing the covariance model in the form of a factor model with unknown number of latent factors. We introduce binary indicators for factor selection and rank estimation for the low rank component combined with a Bayesian lasso method for the sparse component estimation. Simulation studies show that our method can recover the rank as well as the sparsity of the two components respectively. We further extend our method to a graphical factor model where the graphical model of the residuals as well as selecting the number of factors is of interest. We employ a hyper-inverse Wishart prior for modeling decomposable graphs of the residuals, and a Bayesian graphical lasso selection method for unrestricted graphs. We show through simulations that the extended models can recover both the number of latent factors and the graphical model of the residuals successfully when the sample size is sufficient relative to the dimension.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا