ترغب بنشر مسار تعليمي؟ اضغط هنا

X-ray photoelectron spectroscopy, Magnetotransport and Magnetization study of Nb2PdS5 superconductor

85   0   0.0 ( 0 )
 نشر من قبل Veer Awana Dr
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In the present report, we investigate various properties of the Nb2PdS5 superconductor. Scanning electron microscopy displayed slabs like laminar growth of Nb2PdS5while X-ray photoelectron spectroscopy exhibited the hybridization of Sulphur (2p) with both Palladium (3d)and Niobium (3d). High field (140kOe) magneto-transport measurements revealed that superconductivity (Tc onset =7K and Tc R = 0 = 6.2K) of the studied Nb2PdS5material is quite robust against magnetic field with the upper critical field (Hc2) outside the Pauli paramagnetic limit. Thermally activated flux flow (TAFF) of the compound showed that resistivity curves follow Arrhenius behaviour. The activation energy for Nb2PdS5 is found to decrease from 15.15meV at 10kOe to 2.35meV at 140kOe. Seemingly, the single vortex pinning is dominant in low field regions, while collective pinning is dominant in high field region. The temperature dependence of AC susceptibility confirmed the Tc at 6K, further varying amplitude and frequency showed well coupled granular nature of superconductivity. The lower critical field (Hc1) is extracted from DC magnetisation measurements at various T below Tc. It is found that Hc1(T) of Nb2PdS5 material seemingly follows the multiband nature of superconductivity.

قيم البحث

اقرأ أيضاً

The bulk polycrystalline sample FeSe1/2Te1/2 is synthesized by solid state reaction route in an evacuated sealed quartz tube at 750 oC. The presence of superconductivity is confirmed through magnetization/thermoelectric/resistivity studies. It is fou nd that the superconducting transition temperature (Tc) is around 12 K. Heat capacity (Cp) of superconducting FeSe1-xTex exhibited a hump near Tc, instead of well defined Lambda transition. X-ray Photo electron spectroscopy (XPS) studies revealed well defined positions for divalent Fe, Se and Te but with sufficient hybridization of Fe (2p) and Se/Te (3d) core levels. In particular divalent Fe is shifted to higher BE (binding energy) and Se and Te to lower. The situation is similar to that as observed earlier for famous Cu based HTSc (High Tc superconductors), where Cu (3d) orbital hybridizes with O (2p). We also found the satellite peak of Fe at 712.00 eV, which is attributed to charge carrier localization induced by Fe at 2c site.
We report specific heat under different magnetic fields for recently discovered quasi-one dimensional Nb2PdS5 superconductor. The studied compound is superconducting below 6 K. Nb2PdS5 is quite robust against magnetic field with dHc/dT of -42 kOe/K. The estimated upper critical field [Hc2(0)] is 190 kOe, clearly surpassing the Pauli-paramagnetic limit of 1.84Tc. Low temperature heat capacity in superconducting state of Nb2PdS5 under different magnetic fields showed s-wave superconductivity with two different gaps. Two quasi-linear slopes in Somerfield-coefficient as a function of applied magnetic field and two band behavior of the electronic heat capacity demonstrate that Nb2PdS5 is a multiband su-perconductor in weak coupling limit with deltagamma/deltaTc=0.9.
We present a resonant inelastic x-ray scattering (RIXS) study of spin and charge excitations in overdoped La1.77Sr0.23CuO4 along two high-symmetry directions. The line shape of these excitations is analyzed and they are shown to be highly overdamped. Their spectral weight and damping are found to be strongly momentum dependent. Qualitative agreement between these observations and a calculated RPA susceptibility is obtained for this overdoped compound, implying that a significant contribution to the RIXS signal stems from a continuum of charge excitations. Furthermore, this suggests that the spin-excitations in the overdoped regime can be captured qualitatively by an itinerant picture. Our calculations also predict a new low-energy spin excitation branch to exist along the nodal direction near the zone center. With the energy resolution of the present experiment, this branch is not resolvable but we show that next generation of high-resolution spectrometers will be able to test this prediction.
111 - G. P. Zhang 2003
Angle-resolved soft x-ray measurements made at the boron K-edge in single crystal MgB2 provide new insights into the B-2p local partial density of both unoccupied and occupied band states. The strong variation of absorption with incident angle of exc iting x-rays permits the clear separation of contributions from sigma states in the boron plane and pi states normal to the plane. A careful comparison with theory accurately determines the energy of selected critical $k$ points in the conduction band. Resonant inelastic x-ray emission at an incident angle of 15 degrees shows a large enhancement of the emission spectra within about 0.5 eV of the Fermi level that is absent at 45 degrees and is much reduced at 60 degrees. We conclude that momentum transferred from the resonant inelastic x-ray scattering (RIXS) process couples empty and filled states across the Fermi level.
We performed an angle-resolved photoemission spectroscopy study of the Ni-based superconductor SrNi$_2$As$_2$. Electron and hole Fermi surface pockets are observed, but their different shapes and sizes lead to very poor nesting conditions. The experi mental electronic band structure of SrNi$_2$As$_2$ is in good agreement with first-principles calculations after a slight renormalization (by a factor 1.1), confirming the picture of Hunds exchange-dominated electronic correlations decreasing with increasing filling of the $3d$ shell in the Fe-, Co- and Ni-based compounds. These findings emphasize the importance of Hunds coupling and $3d$-orbital filling as key tuning parameters of electronic correlations in transition metal pnictides.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا