ﻻ يوجد ملخص باللغة العربية
The search for minor bodies in the solar system promises insights into its formation history. Wide imaging surveys offer the opportunity to serendipitously discover and identify these traces of planetary formation and evolution. We aim to present a method to acquire position, photometry, and proper motion measurements of solar system objects in surveys using dithered image sequences. The application of this method on the Kilo-Degree Survey is demonstrated. Optical images of 346 square degree fields of the sky are searched in up to four filters using the AstrOmatic software suite to reduce the pixel to catalog data. The solar system objects within the acquired sources are selected based on a set of criteria depending on their number of observation, motion, and size. The Virtual Observatory SkyBoT tool is used to identify known objects. We observed 20,221 SSO candidates, with an estimated false-positive content of less than 0.05%. Of these SSO candidates, 53.4% are identified by SkyBoT. KiDS can detect previously unknown SSOs because of its depth and coverage at high ecliptic latitude, including parts of the Southern Hemisphere. Thus we expect the large fraction of the 46.6% of unidentified objects to be truly new SSOs. Our method is applicable to a variety of dithered surveys such as DES, LSST, and Euclid. It offers a quick and easy-to-implement search for solar system objects. SkyBoT can then be used to estimate the completeness of the recovered sample.
The Kilo Degree Survey (KiDS) is a 1500 square degree optical imaging survey with the recently commissioned OmegaCAM wide-field imager on the VLT Survey Telescope (VST). A suite of data products will be delivered to the European Southern Observatory
We present a catalog of quasars selected from broad-band photometric ugri data of the Kilo-Degree Survey Data Release 3 (KiDS DR3). The QSOs are identified by the random forest (RF) supervised machine learning model, trained on SDSS DR14 spectroscopi
In the preparation for ESAs Euclid mission and the large amount of data it will produce, we train deep convolutional neural networks on Euclid simulations classify solar system objects from other astronomical sources. Using transfer learning we are a
We present the results of our first year of quasar search in the on-going ESO public Kilo Degree Survey (KiDS) and VISTA Kilo-Degree Infrared Galaxy (VIKING) surveys. These surveys are among the deeper wide-field surveys that can be used to uncovered
In this paper, we present the tools used to search for galaxy clusters in the Kilo Degree Survey (KiDS), and our first results. The cluster detection is based on an implementation of the optimal filtering technique that enables us to identify cluster