ﻻ يوجد ملخص باللغة العربية
We adapt the theory of chordal Loewner chains to the operator-valued matricial upper-half plane over a $C^*$-algebra $mathcal{A}$. We define an $mathcal{A}$-valued chordal Loewner chain as a subordination chain of analytic self-maps of the $mathcal{A}$-valued upper half-plane, such that each $F_t$ is the reciprocal Cauchy transform of an $mathcal{A}$-valued law $mu_t$, such that the mean and variance of $mu_t$ are continuous functions of $t$. We relate $mathcal{A}$-valued Loewner chains to processes with $mathcal{A}$-valued free or monotone independent independent increments just as was done in the scalar case by Bauer (Lowners equation from a non-commutative probability perspective, J. Theoretical Prob., 2004) and Schei{ss}inger (The Chordal Loewner Equation and Monotone Probability Theory, Inf. Dim. Anal., Quantum Probability, and Related Topics, 2017). We show that the Loewner equation $partial_t F_t(z) = DF_t(z)[V_t(z)]$, when interpreted in a certain distributional sense, defines a bijection between Lipschitz mean-zero Loewner chains $F_t$ and vector fields $V_t(z)$ of the form $V_t(z) = -G_{ u_t}(z)$ where $ u_t$ is a generalized $mathcal{A}$-valued law. Based on the Loewner equation, we derive a combinatorial expression for the moments of $mu_t$ in terms of $ u_t$. We also construct non-commutative random variables on an operator-valued monotone Fock space which realize the laws $mu_t$. Finally, we prove a version of the monotone central limit theorem which describes the behavior of $F_t$ as $t to +infty$ when $ u_t$ has uniformly bounded support.
We introduce a class of independence relations, which include free, Boolean and monotone independence, in operator valued probability. We show that this class of independence relations have a matricial extension property so that we can easily study t
In this paper we show how questions about operator algebras constructed from stochastic matrices motivate new results in the study of harmonic functions on Markov chains. More precisely, we characterize coincidence of conditional probabilities in ter
We show that the limit laws of random matrices, whose entries are conditionally independent operator valued random variables having equal second moments proportional to the size of the matrices, are operator valued semicircular laws. Furthermore, we
We study $N$-ary non-commutative notions of independence, which are given by trees and which generalize free, Boolean, and monotone independence. For every rooted subtree $mathcal{T}$ of the $N$-regular tree, we define the $mathcal{T}$-free product o
In this article, we introduce the notions of weak boundary repre- sentation, quasi hyperrigidity and weak peak points in the non-commutative setting for operator systems in C* algebras. An analogue of Saskin theorem relating quasi hyperrigidity and w