ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantifying the Influence of Component Failure Probability on Cascading Blackout Risk

138   0   0.0 ( 0 )
 نشر من قبل Jinpeng Guo
 تاريخ النشر 2017
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

The risk of cascading blackouts greatly relies on failure probabilities of individual components in power grids. To quantify how component failure probabilities (CFP) influences blackout risk (BR), this paper proposes a sample-induced semi-analytic approach to characterize the relationship between CFP and BR. To this end, we first give a generic component failure probability function (CoFPF) to describe CFP with varying parameters or forms. Then the exact relationship between BR and CoFPFs is built on the abstract Markov-sequence model of cascading outages. Leveraging a set of samples generated by blackout simulations, we further establish a sample-induced semi-analytic mapping between the unbiased estimation of BR and CoFPFs. Finally, we derive an efficient algorithm that can directly calculate the unbiased estimation of BR when the CoFPFs change. Since no additional simulations are required, the algorithm is computationally scalable and efficient. Numerical experiments well confirm the theory and the algorithm.



قيم البحث

اقرأ أيضاً

Whereas maintenance has been recognized as an important and effective means for risk management in power systems, it turns out to be intractable if cascading blackout risk is considered due to the extremely high computational complexity. In this pape r, based on the inference from the blackout simulation data, we propose a methodology to efficiently identify the most influential component(s) for mitigating cascading blackout risk in a large power system. To this end, we first establish an analytic relationship between maintenance strategies and blackout risk estimation by inferring from the data of cascading outage simulations. Then we formulate the component maintenance decision-making problem as a nonlinear 0-1 programming. Afterwards, we quantify the credibility of blackout risk estimation, leading to an adaptive method to determine the least required number of simulations, which servers as a crucial parameter of the optimization model. Finally, we devise two heuristic algorithms to find approximate optimal solutions to the model with very high efficiency. Numerical experiments well manifest the efficacy and high efficiency of our methodology.
Cascading failure models are typically used to capture the phenomenon where failures possibly trigger further failures in succession, causing knock-on effects. In many networks this ultimately leads to a disintegrated network where the failure propag ation continues independently across the various components. In order to gain insight in the impact of network splitting on cascading failure processes, we extend a well-established cascading failure model for which the number of failures obeys a power-law distribution. We assume that a single line failure immediately splits the network in two components, and examine its effect on the power-law exponent. The results provide valuable qualitative insights that are crucial first steps towards understanding more complex network splitting scenarios.
In this paper, we introduce the rich classes of conditional distortion (CoD) risk measures and distortion risk contribution ($Delta$CoD) measures as measures of systemic risk and analyze their properties and representations. The classes include the w ell-known conditional Value-at-Risk, conditional Expected Shortfall, and risk contribution measures in terms of the VaR and ES as special cases. Sufficient conditions are presented for two random vectors to be ordered by the proposed CoD-risk measures and distortion risk contribution measures. These conditions are expressed using the conventional stochastic dominance, increasing convex/concave, dispersive, and excess wealth orders of the marginals and canonical positive/negative stochastic dependence notions. Numerical examples are provided to illustrate our theoretical findings. This paper is the second in a triplet of papers on systemic risk by the same authors. In cite{DLZorder2018a}, we introduce and analyze some new stochastic orders related to systemic risk. In a third (forthcoming) paper, we attribute systemic risk to the different participants in a given risky environment.
Transmission line failures in power systems propagate and cascade non-locally. This well-known yet counter-intuitive feature makes it even more challenging to optimally and reliably operate these complex networks. In this work we present a comprehens ive framework based on spectral graph theory that fully and rigorously captures how multiple simultaneous line failures propagate, distinguishing between non-cut and cut set outages. Using this spectral representation of power systems, we identify the crucial graph sub-structure that ensures line failure localization -- the network bridge-block decomposition. Leveraging this theory, we propose an adaptive network topology reconfiguration paradigm that uses a two-stage algorithm where the first stage aims to identify optimal clusters using the notion of network modularity and the second stage refines the clusters by means of optimal line switching actions. Our proposed methodology is illustrated using extensive numerical examples on standard IEEE networks and we discussed several extensions and variants of the proposed algorithm.
In this work, we present an analysis of the Burst failure effect in the $H_infty$ norm. We present a procedure to perform an analysis between different Markov Chain models and a numerical example. In the numerical example the results obtained pointed out that the burst failure effect in the performance does not exceed 6.3%. However, this work is an introduction for a wider and more extensive analysis in this subject.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا