ترغب بنشر مسار تعليمي؟ اضغط هنا

Development of Multi-Chroic MKIDs for Next-Generation CMB Polarization Studies

76   0   0.0 ( 0 )
 نشر من قبل Bradley Johnson
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on the status of an ongoing effort to develop arrays of horn-coupled, polarization-sensitive microwave kinetic inductance detectors (MKIDs) that are each sensitive to two spectral bands between 125 and 280 GHz. These multi-chroic MKID arrays are tailored for next-generation, large-detector-count experiments that are being designed to simultaneously characterize the polarization properties of both the cosmic microwave background (CMB) and Galactic dust emission. We present our device design and describe laboratory-based measurement results from two 23-element prototype arrays. From dark measurements of our first engineering array we demonstrated a multiplexing factor of 92, showed the resonators respond to bath temperature changes as expected, and found that the fabrication yield was 100%. From our first optically loaded array we found the MKIDs respond to millimeter-wave pulses, additional optical characterization measurements are ongoing. We end by discussing our plans for scaling up this technology to kilo-pixel arrays over the next two years.

قيم البحث

اقرأ أيضاً

We report on the development of scalable prototype microwave kinetic inductance detector (MKID) arrays tailored for future multi-kilo-pixel experiments that are designed to simultaneously characterize the polarization properties of both the cosmic mi crowave background (CMB) and Galactic dust emission. These modular arrays are composed of horn-coupled, polarization-sensitive MKIDs, and each pixel has four detectors: two polarizations in two spectral bands between 125 and 280 GHz. A horn is used to feed each array element, and a planar orthomode transducer, composed of two waveguide probe pairs, separates the incoming light into two linear polarizations. Diplexers composed of resonant-stub band-pass filters separate the radiation into 125 to 170 GHz and 190 to 280 GHz pass bands. The millimeter-wave power is ultimately coupled to a hybrid co-planar waveguide microwave kinetic inductance detector using a novel, broadband circuit developed by our collaboration. Electromagnetic simulations show the expected absorption efficiency of the detector is approximately 90%. Array fabrication will begin in the summer of 2016.
A detection of curl-type ($B$-mode) polarization of the primary CMB would be direct evidence for the inflationary paradigm of the origin of the Universe. The BICEP/Keck Array (BK) program targets the degree angular scales, where the power from primor dial $B$-mode polarization is expected to peak, with ever-increasing sensitivity and has published the most stringent constraints on inflation to date. BICEP Array (BA) is the Stage-3 instrument of the BK program and will comprise four BICEP3-class receivers observing at 30/40, 95, 150 and 220/270 GHz with a combined 32,000+ detectors; such wide frequency coverage is necessary for control of the Galactic foregrounds, which also produce degree-scale $B$-mode signal. The 30/40 GHz receiver is designed to constrain the synchrotron foreground and has begun observing at the South Pole in early 2020. By the end of a 3-year observing campaign, the full BICEP Array instrument is projected to reach $sigma_r$ between 0.002 and 0.004, depending on foreground complexity and degree of removal of $B$-modes due to gravitational lensing (delensing). This paper presents an overview of the design, measured on-sky performance and calibration of the first BA receiver. We also give a preview of the added complexity in the time-domain multiplexed readout of the 7,776-detector 150 GHz receiver.
We discuss the design considerations and initial measurements from arrays of dual-polarization, lumped element kinetic inductance detectors (LEKIDs) nominally designed for cosmic microwave background (CMB) studies. The detectors are horn-coupled, and each array element contains two single-polarization LEKIDs, which are made from thin-film aluminum and optimized for a single spectral band centered on 150 GHz. We are developing two array architectures, one based on 160 micron thick silicon wafers and the other based on silicon-on-insulator (SOI) wafers with a 30 micron thick device layer. The 20-element test arrays (40 LEKIDs) are characterized with both a linearly-polarized electronic millimeter wave source and a thermal source. We present initial measurements including the noise spectra, noise-equivalent temperature, and responsivity. We discuss future testing and further design optimizations to be implemented.
Future arcminute resolution polarization data from ground-based Cosmic Microwave Background (CMB) observations can be used to estimate the contribution to the temperature power spectrum from the primary anisotropies and to uncover the signature of re ionization near $ell=1500$ in the small angular-scale temperature measurements. Our projections are based on combining expected small-scale E-mode polarization measurements from Advanced ACTPol in the range $300<ell<3000$ with simulated temperature data from the full Planck mission in the low and intermediate $ell$ region, $2<ell<2000$. We show that the six basic cosmological parameters determined from this combination of data will predict the underlying primordial temperature spectrum at high multipoles to better than $1%$ accuracy. Assuming an efficient cleaning from multi-frequency channels of most foregrounds in the temperature data, we investigate the sensitivity to the only residual secondary component, the kinematic Sunyaev-Zeldovich (kSZ) term. The CMB polarization is used to break degeneracies between primordial and secondary terms present in temperature and, in effect, to remove from the temperature data all but the residual kSZ term. We estimate a $15 sigma$ detection of the diffuse homogeneous kSZ signal from expected AdvACT temperature data at $ell>1500$, leading to a measurement of the amplitude of matter density fluctuations, $sigma_8$, at $1%$ precision. Alternatively, by exploring the reionization signal encoded in the patchy kSZ measurements, we bound the time and duration of the reionization with $sigma(z_{rm re})=1.1$ and $sigma(Delta z_{rm re})=0.2$. We find that these constraints degrade rapidly with large beam sizes, which highlights the importance of arcminute-scale resolution for future CMB surveys.
New telescopes are being built to measure the Cosmic Microwave Background (CMB) with unprecedented sensitivity, including Simons Observatory (SO), CCAT-prime, the BICEP Array, SPT-3G, and CMB Stage-4. We present observing strategies for telescopes lo cated in Chile that are informed by the tools used to develop recent Atacama Cosmology Telescope (ACT) and Polarbear surveys. As with ACT and Polarbear, these strategies are composed of scans that sweep in azimuth at constant elevation. We explore observing strategies for both small (0.42 m) aperture telescopes (SAT) and a large (6 m) aperture telescope (LAT). We study strategies focused on small sky areas to search for inflationary gravitational waves as well as strategies spanning roughly half the low-foreground sky to constrain the effective number of relativistic species and measure the sum of neutrino masses via the gravitational lensing signal due to large scale structure. We present these strategies specifically considering the telescope hardware and science goals of the SO, located at 23 degrees South latitude, 67.8 degrees West longitude. Observations close to the Sun and the Moon can introduce additional systematics by applying additional power to the instrument through telescope sidelobes. Significant side lobe contamination in the data can occur even at tens of degrees or more from bright sources. Therefore, we present several strategies that implement Sun and Moon avoidance constraints into the telescope scheduling. Strategies for resolving conflicts between simultaneously visible fields are discussed. We focus on maximizing telescope time spent on science observations. It will also be necessary to schedule calibration measurements, however that is beyond the scope of this work. The outputs of this study are algorithms that can generate specific schedule commands for the Simons Observatory instruments.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا