ﻻ يوجد ملخص باللغة العربية
The Max-Cut problem is a well known combinatorial optimization problem. In this paper we describe a fast approximation method. Given a graph G, we want to find a cut whose size is maximal among all possible cuts. A cut is a partition of the vertex set of G into two disjoint subsets. For an unweighted graph, the size of the cut is the number of edges that have one vertex on either side of the partition; we also consider a weighted version of the problem where each edge contributes a nonnegative weight to the cut. We introduce the signless Ginzburg-Landau functional and prove that this functional Gamma-converges to a Max-Cut objective functional. We approximately minimize this functional using a graph based signless Merriman-Bence-Osher scheme, which uses a signless Laplacian. We show experimentally that on some classes of graphs the resulting algorithm produces more accurate maximum cut approximations than the current state-of-the-art approximation algorithm. One of our methods of minimizing the functional results in an algorithm with a time complexity of O(|E|), where |E| is the total number of edges on G.
We study a graph based version of the Ohta-Kawasaki functional, which was originally introduced in a continuum setting to model pattern formation in diblock copolymer melts and has been studied extensively as a paradigmatic example of a variational m
Tumor detection in biomedical imaging is a time-consuming process for medical professionals and is not without errors. Thus in recent decades, researchers have developed algorithmic techniques for image processing using a wide variety of mathematical
We show that the linear or quadratic 0/1 program[P:quadmin{ c^Tx+x^TFx : :A,x =b;:xin{0,1}^n},]can be formulated as a MAX-CUT problem whose associated graph is simply related to the matrices $F$ and $A^TA$.Hence the whole arsenal of approximation tec
In gravitationally stratified fluids, length scales are normally much greater in the horizontal direction than in the vertical one. When modelling these fluids it can be advantageous to use the hydrostatic approximation, which filters out vertically
In this work, we initiate the study of fault tolerant Max Cut, where given an edge-weighted undirected graph $G=(V,E)$, the goal is to find a cut $Ssubseteq V$ that maximizes the total weight of edges that cross $S$ even after an adversary removes $k