ﻻ يوجد ملخص باللغة العربية
The pseudofermion functional renormalization group (pf-FRG) is one of the few numerical approaches that has been demonstrated to quantitatively determine the ordering tendencies of frustrated quantum magnets in two and three spatial dimensions. The approach, however, relies on a number of presumptions and approximations, in particular the choice of pseudofermion decomposition and the truncation of an infinite number of flow equations to a finite set. Here we generalize the pf-FRG approach to SU(N)-spin systems with arbitrary N and demonstrate that the scheme becomes exact in the large-N limit. Numerically solving the generalized real-space renormalization group equations for arbitrary N, we can make a stringent connection between the physically most significant case of SU(2)-spins and more accessible SU(N) models. In a case study of the square-lattice SU(N) Heisenberg antiferromagnet, we explicitly demonstrate that the generalized pf-FRG approach is capable of identifying the instability indicating the transition into a staggered flux spin liquid ground state in these models for large, but finite values of N. In a companion paper (arXiv:1711.02183) we formulate a momentum-space pf-FRG approach for SU(N) spin models that allows us to explicitly study the large-N limit and access the low-temperature spin liquid phase.
In frustrated magnetism, making a stringent connection between microscopic spin models and macroscopic properties of spin liquids remains an important challenge. A recent step towards this goal has been the development of the pseudofermion functional
We show that the N-patch functional renormalization group (pFRG), a theoretical method commonly applied for correlated electron systems, is unable to implement consistently the matrix element interference arising from strong momentum dependence in th
We investigate the infrared properties of SU(N)$_k$ conformal field theory perturbed by its adjoint primary field in 1+1 dimensions. The latter field theory is shown to govern the low-energy properties of various SU(N) spin chain problems. In particu
Building on advanced results on permutations, we show that it is possible to construct, for each irreducible representation of SU(N), an orthonormal basis labelled by the set of {it standard Young tableaux} in which the matrix of the Heisenberg SU(N)
We study two-dimensional Heisenberg antiferromagnets with additional multi-spin interactions which can drive the system into a valence-bond solid state. For standard SU(2) spins, we consider both four- and six-spin interactions. We find continuous qu