ﻻ يوجد ملخص باللغة العربية
Electron spins hold great promise for quantum computation due to their long coherence times. An approach to realize interactions between distant spin-qubits is to use photons as carriers of quantum information. We demonstrate strong coupling between single microwave photons in a NbTiN high impedance cavity and a three-electron spin-qubit in a GaAs triple quantum dot. We resolve the vacuum Rabi mode splitting with a coupling strength of $g/2pisimeq31$ MHz and a qubit decoherence of $gamma_2/2pisimeq 20$ MHz. We can tune the decoherence electrostatically and obtain a minimal $gamma_2/2pisimeq 10$ MHz for $g/2pisimeq 23$ MHz. The dependence of the qubit-photon coupling strength on the tunable electric dipole moment of the qubit is measured directly using the ac Stark effect. Our demonstration of strong spin-photon interaction is an important step towards coherent long-distance coupling of spin-qubits.
Spin qubits and superconducting qubits are among the promising candidates for a solid state quantum computer. For the implementation of a hybrid architecture which can profit from the advantages of either world, a coherent long-distance link is neces
We implement superconducting YBCO planar resonators with two fundamental modes for circuit quantum electrodynamics experiments. We first demonstrate good tunability in the resonant microwave frequencies and in their interplay as it emerges from the d
A fault-tolerant quantum processor may be configured using stationary qubits interacting only with their nearest neighbours, but at the cost of significant overheads in physical qubits per logical qubit. Such overheads could be reduced by coherently
Two promising architectures for solid-state quantum information processing are electron spins in semiconductor quantum dots and the collective electromagnetic modes of superconducting circuits. In some aspects, these two platforms are dual to one ano
Initialization, manipulation, and measurement of a three-spin qubit are demonstrated using a few-electron triple quantum dot, where all operations can be driven by tuning the nearest-neighbor exchange interaction. Multiplexed reflectometry, applied t