ﻻ يوجد ملخص باللغة العربية
We consider the stochastic convection-diffusion equation [ partial_t u(t,,{bf x}) = uDelta u(t,,{bf x}) + V(t,,x_1)partial_{x_2}u(t,,{bf x}), ] for $t>0$ and ${bf x}=(x_1,,x_2)inmathbb{R}^2$, subject to $theta_0$ being a nice initial profile. Here, the velocity field $V$ is assumed to be centered Gaussian with covariance structure [ text{Cov}[V(t,,a),,V(s,,b)]= delta_0(t-s)rho(a-b)qquadtext{for all $s,tge0$ and $a,binmathbb{R}$}, ] where $rho$ is a continuous and bounded positive-definite function on $mathbb{R}$. We prove a quite general existence/uniqueness/regularity theorem, together with a probabilistic representation of the solution that represents $u$ as an expectation functional of an exogenous infinite-dimensional Brownian motion. We use that probabilistic representation in order to study the It^o/Walsh solution, when it exists, and relate it to the Stratonovich solution which is shown to exist for all $ u>0$. Our a priori estimates imply the physically-natural fact that, quite generally, the solution dissipates. In fact, very often, begin{equation} Pleft{sup_{|x_1|leq m}sup_{x_2inmathbb{R}} |u(t,,{bf x})| = Oleft(frac{1}{sqrt t}right)qquadtext{as $ttoinfty$} right}=1qquadtext{for all $m>0$}, end{equation} and the $O(1/sqrt t)$ rate is shown to be unimproveable. Our probabilistic representation is malleable enough to allow us to analyze the solution in two physically-relevant regimes: As $ttoinfty$ and as $ uto 0$. Among other things, our analysis leads to a macroscopic multifractal analysis of the rate of decay in the above equation in terms of the reciprocal of the Prandtl (or Schmidt) number, valid in a number of simple though still physically-relevant cases.
Transcritical flow of a stratified fluid past a broad localised topographic obstacle is studied analytically in the framework of the forced extended Korteweg--de Vries (eKdV), or Gardner, equation. We consider both possible signs for the cubic nonlin
A numerical study of stably stratified flows past spheres at Reynolds numbers $Re=200$ and $Re=300$ is reported. In these flow regimes, a neutrally stratified laminar flow induces distinctly different near-wake features. However, the flow behaviour c
The linear stability of three-dimensional (3D) vortices in rotating, stratified flows has been studied by analyzing the non-hydrostatic inviscid Boussinesq equations. We have focused on a widely-used model of geophysical and astrophysical vortices, w
High-energy emission of extragalactic objects is known to take place in relativistic jets, but the nature, the location, and the emission processes of the emitting particles are still unknown. One of the models proposed to explain the formation of re
We study the two-point correlation function of a freely decaying scalar in Kraichnans model of advection by a Gaussian random velocity field, stationary and white-noise in time but fractional Brownian in space with roughness exponent $0<zeta<2$, appr