ترغب بنشر مسار تعليمي؟ اضغط هنا

Spectral asymmetries in the resonance fluorescence of two-level systems under pulsed excitation

92   0   0.0 ( 0 )
 نشر من قبل Chris Gustin
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present an open-system master equation study of the coherent and incoherent resonance fluorescence spectrum from a two-level quantum system under coherent pulsed excitation. Several pronounced features which differ from the fluorescence under a constant drive are highlighted, including a multi-peak structure and a pronounced off-resonant spectral asymmetry, in stark contrast to the conventional symmetrical Mollow triplet. We also study semiconductor quantum dot systems using a polaron master equation, and show how the key features of dynamic resonance fluorescence change with electron--acoustic-phonon coupling.



قيم البحث

اقرأ أيضاً

Multi-photon emitters are a sought-after resource in quantum photonics. Nonlinear interactions between a multi-level atomic system and a coherent drive can lead to resonant two-photon emission, but harvesting light from this process has remained a ch allenge due to the small oscillator strengths involved. Here we present a study of two-photon resonance fluorescence at microwave frequencies, using a superconducting, ladder-type artificial atom, a transmon, strongly coupled to a waveguide. We drive the two-photon transition between the ground and second-excited state at increasingly high powers and observe a resonance fluorescence peak whose intensity becomes comparable to single-photon emission until it splits into a Mollow-like triplet. We measure photon correlations of frequency-filtered spectral lines and find that while emission at the fundamental frequency stays antibunched, the resonance fluorescence peak at the two-photon transition is superbunched. Our results provide a route towards the realization of multi-photon sources in the microwave domain.
We present a model describing the use of ultra-short strong pulses to control the population of the excited level of a two-level quantum system. In particular, we study an off-resonance excitation with a few cycles pulse which presents a smooth phase jump i.e. a change of the pulses phase which is not step-like, but happens over a finite time interval. A numerical solution is given for the time-dependent probability amplitude of the excited level. The control of the excited levels population is obtained acting on the shape of the phase transient, and other parameters of the excitation pulse.
Microscopic two-level system (TLS) defects at dielectric surfaces and interfaces are among the dominant sources of loss in superconducting quantum circuits, and their properties have been extensively probed using superconducting resonators and qubits . We report on spectroscopy of TLSs coupling to the strain field in a surface acoustic wave (SAW) resonator. The narrow free spectral range of the resonator allows for two-tone spectroscopy where a strong pump is applied at one resonance while a weak signal is used to probe a different mode. We map the spectral hole burnt by the pump tone as a function of frequency and extract parameters of the TLS ensemble. Our results suggest that detuned acoustic pumping can be used to enhance the coherence of superconducting devices by saturating TLSs.
Vibrational environments are commonly considered to be detrimental to the optical emission properties of solid-state and molecular systems, limiting their performance within quantum information protocols. Given that such environments arise naturally it is important to ask whether they can instead be turned to our advantage. Here we show that vibrational interactions can be harnessed within resonance fluorescence to generate optical states with a higher degree of quadrature squeezing than in isolated atomic systems. Considering the example of a driven quantum dot coupled to phonons, we demonstrate that it is feasible to surpass the maximum level of squeezing theoretically obtainable in an isolated atomic system and indeed come close to saturating the fundamental upper bound on squeezing from a two-level emitter. We analyse the performance of these vibrationally-enhanced squeezed states in a phase estimation protocol, finding that for the same photon flux, they can outperform the single mode squeezed vacuum state.
183 - Hui Wang , Jian Qin , Si Chen 2020
Intensity squeezing, i.e., photon number fluctuations below the shot noise limit, is a fundamental aspect of quantum optics and has wide applications in quantum metrology. It was predicted in 1979 that the intensity squeezing could be observed in res onance fluorescence from a two-level quantum system. Yet, its experimental observation in solid states was hindered by inefficiencies in generating, collecting and detecting resonance fluorescence. Here, we report the intensity squeezing in a single-mode fibre-coupled resonance fluorescence single-photon source based on a quantum dot-micropillar system. We detect pulsed single-photon streams with 22.6% system efficiency, which show subshot-noise intensity fluctuation with an intensity squeezing of 0.59 dB. We estimate a corrected squeezing of 3.29 dB at the first lens. The observed intensity squeezing provides the last piece of the fundamental picture of resonance fluorescence; which can be used as a new standard for optical radiation and in scalable quantum metrology with indistinguishable single photons.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا