ﻻ يوجد ملخص باللغة العربية
We introduce and investigate a class of profinite groups defined via extensions of centralizers analogous to the extensively studied class of finitely generated fully residually free groups, that is, limit groups (in the sense of Z. Sela). From the fact that the profinite completion of limit groups belong to this class, results on their group-theoretical structure and homological properties are obtained.
The article deals with profinite groups in which the centralizers are pronilpotent (CN-groups). It is shown that such groups are virtually pronilpotent. More precisely, let G be a profinite CN-group, and let F be the maximal normal pronilpotent subgr
A group $G$ is said to have restricted centralizers if for each $g$ in $G$ the centralizer $C_G(g)$ either is finite or has finite index in $G$. Shalev showed that a profinite group with restricted centralizers is virtually abelian. Given a set of pr
The article deals with profinite groups in which the centralizers are abelian (CA-groups), that is, with profinite commutativity-transitive groups. It is shown that such groups are virtually pronilpotent. More precisely, let G be a profinite CA-group
The article deals with profinite groups in which centralizers are virtually procyclic. Suppose that G is a profinite group such that the centralizer of every nontrivial element is virtually torsion-free while the centralizer of every element of infin
Let $q$ be a prime, $n$ a positive integer and $A$ an elementary abelian group of order $q^r$ with $rgeq2$ acting on a finite $q$-group $G$. The following results are proved. We show that if all elements in $gamma_{r-1}(C_G(a))$ are $n$-Engel in $G