ﻻ يوجد ملخص باللغة العربية
In convex integer programming, various procedures have been developed to strengthen convex relaxations of sets of integer points. On the one hand, there exist several general-purpose methods that strengthen relaxations without specific knowledge of the set $ S $, such as popular linear programming or semi-definite programming hierarchies. On the other hand, various methods have been designed for obtaining strengthened relaxations for very specific sets that arise in combinatorial optimization. We propose a new efficient method that interpolates between these two approaches. Our procedure strengthens any convex set $ Q subseteq mathbb{R}^n $ containing a set $ S subseteq {0,1}^n $ by exploiting certain additional information about $ S $. Namely, the required extra information will be in the form of a Boolean formula $ phi $ defining the target set $ S $. The aim of this work is to analyze various aspects regarding the strength of our procedure. As one result, interpreting an iterated application of our procedure as a hierarchy, our findings simplify, improve, and extend previous results by Bienstock and Zuckerberg on covering problems.
Dimension is a standard and well-studied measure of complexity of posets. Recent research has provided many new upper bounds on the dimension for various structurally restricted classes of posets. Bounded dimension gives a succinct representation of
Dependency quantified Boolean formulas (DQBFs) are a powerful formalism, which subsumes quantified Boolean formulas (QBFs) and allows an explicit specification of dependencies of existential variables on universal variables. Driven by the needs of va
We show that if $fcolon S_n to {0,1}$ is $epsilon$-close to linear in $L_2$ and $mathbb{E}[f] leq 1/2$ then $f$ is $O(epsilon)$-close to a union of mostly disjoint cosets, and moreover this is sharp: any such union is close to linear. This constitute
We show that a Boolean degree $d$ function on the slice $binom{[n]}{k} = { (x_1,ldots,x_n) in {0,1} : sum_{i=1}^n x_i = k }$ is a junta, assuming that $k,n-k$ are large enough. This generalizes a classical result of Nisan and Szegedy on the hypercube
Given $n$ points in the plane, a emph{covering path} is a polygonal path that visits all the points. If no three points are collinear, every covering path requires at least $n/2$ segments, and $n-1$ straight line segments obviously suffice even if th