ترغب بنشر مسار تعليمي؟ اضغط هنا

Long-Lasting Extreme Magnetic Storm Activities in 1770 Found in Historical Documents

94   0   0.0 ( 0 )
 نشر من قبل Harufumi Tamazawa
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Dim red aurora at low magnetic latitudes is a visual and recognized manifestation of geomagnetic storms. The great low-latitude auroral displays seen throughout East Asia on 16-18 September 1770 are considered to manifest one of the greatest storms. Recently found 111 historical documents in East Asia attest that these low-latitude auroral displays were succeeding for almost 9 nights during 10-19 September 1770 in the lowest magnetic latitude areas (< 30{deg}). This suggests that the duration of the great magnetic storm is much longer than usual. Sunspot drawings from 1770 reveals the fact that sunspots area was twice as large as those observed in another great storm of 1859, which substantiates this unusual storm activities in 1770. These spots likely ejected several huge, sequential magnetic structures in short duration into interplanetary space, resulting in spectacular world-wide aurorae in mid-September 1770. These findings provide new insights about the history, duration, and effects of extreme magnetic storms that may be valuable for those who need to mitigate against extreme events.



قيم البحث

اقرأ أيضاً

142 - J. Q. Sun , X. Cheng , M. D. Ding 2015
Magnetic reconnection, a change of magnetic field connectivity, is a fundamental physical process in which magnetic energy is released explosively. It is responsible for various eruptive phenomena in the universe. However, this process is difficult t o observe directly. Here, the magnetic topology associated with a solar reconnection event is studied in three dimensions (3D) using the combined perspectives of two spacecraft. The sequence of extreme ultraviolet (EUV) images clearly shows that two groups of oppositely directed and non-coplanar magnetic loops gradually approach each other, forming a separator or quasi-separator and then reconnecting. The plasma near the reconnection site is subsequently heated from $sim$1 to $ge$5 MK. Shortly afterwards, warm flare loops ($sim$3 MK) appear underneath the hot plasma. Other observational signatures of reconnection, including plasma inflows and downflows, are unambiguously revealed and quantitatively measured. These observations provide direct evidence of magnetic reconnection in a 3D configuration and reveal its origin.
The importance of the investigation of magnetic superstorms is not limited to academic interest, because these superstorms can cause catastrophic impact on the modern civilisation due to our increasing dependency on technological infrastructure. In t his context, the Carrington storm in September 1859 is considered as a benchmark of observational history owing to its magnetic disturbance and equatorial extent of the auroral oval. So far, several recent auroral reports at that time have been published but those reports are mainly derived from the Northern Hemisphere. In this study, we analyse datable auroral reports from South America and its vicinity, assess the auroral extent using philological and astrometric approaches, identify the auroral visibility at - 17.3{deg} magnetic latitude and further poleward and reconstruct the equatorial boundary of the auroral oval to be 25.1{deg} +/- 0.5{deg} in invariant latitude. Interestingly, brighter and more colourful auroral displays were reported in the South American sector than in the Northern Hemisphere. This north-south asymmetry is presumably associated with variations of their magnetic longitude and the weaker magnetic field over South America compared to the magnetic conjugate point and the increased amount of magnetospheric electron precipitation into the upper atmosphere. These results attest that the magnitude of the Carrington storm indicates that its extent falls within the range of other superstorms, such as those that occurred in May 1921 and February 1872, in terms of the equatorial boundary of the auroral oval.
We review some applications of the method of electronic searching for historical observations of sunspots and aurorae in the Chinese text corpus by Hayakawa et al. etc. However, we show strong shortcomings in the digital search technique as applied b y them: almost all likely true sunspot and aurora records were presented before (e.g. Xu et al. 2000), which is not mentioned in those papers; the remaining records are dubious and often refer to other phenomena, neither spots nor aurorae (this also applies to Hayakawa et al. 2017c). Most of the above publications include very few Chinese texts and translations, and their tables with abbreviated keywords do not allow the reader to consider alternative interpretations (the tables also do not specify which records mention night-time). We have compared some of their event tables with previously published catalogs and found various discrepancies. There are also intrinsic inconsistencies, misleading information (lunar phase for day-time events), and dating errors. We present Chinese texts and translations for some of their presumable new aurorae: only one can be considered a likely true aurora (AD 604 Jan); some others were selected on the sole basis of the use of the word light or rainbow. Several alleged new aurorae present observations beside the Sun during day-time. There are well-known comets among their presumable aurorae. We also discuss, (i) whether heiqi ri pang can stand for black spot(s) on one side of or beside the sun, (ii) aurora color confusion in Hayakawa et al. (2015, 2016), and (iii) whether white and unusual rainbows can be aurorae.
In this article, we present the results of the surveys on sunspots and auroral candidates in Rikkokushi, Japanese Official Histories from the early 7th century to 887 to review the solar and auroral activities. In total, we found one sunspot record a nd 13 auroral candidates in Rikkokushi. We then examine the records of the sunspots and auroral candidates, compare the auroral candidates with the lunar phase to estimate the reliability of the auroral candidates, and compare the records of the sunspots and auroral candidates with the contemporary total solar irradiance reconstructed from radioisotope data. We also identify the locations of the observational sites to review possible equatorward expansion of auroral oval. These discussions suggest a major gap of auroral candidates from the late 7th to early 9th century, which includes the minimum number of candidates reconstructed from the radioisotope data, a similar tendency as the distributions of sunspot records in contemporary China, and a relatively high magnetic latitude with a higher potential for observing aurorae more frequently than at present.
The Maunder Minimum (1645-1715) is currently considered the only grand minimum within telescopic sunspot observations since 1610. During this epoch, the Sun was extremely quiet and unusually free from sunspots. However, despite reduced frequency, can didate aurorae were reported in the mid-European sector during this period and have been associated with occurrences of interplanetary coronal mass ejections (ICMEs), whereas some of them have been identified as misinterpretations. Here, we have analysed reports of candidate aurorae on 1 June 1680 with simultaneous observations in mid-Europe, and compared their descriptions with visual accounts of early modern aurorae. Most contemporary sunspot drawings from 22, 24, and 27 May 1680 have shown that this apparent sunspot may have been a source of ICMEs, which caused the reported candidate aurorae. On the other hand, its intensity estimate shows that the magnetic storm during this candidate aurora was probably within the capability of the storms derived from the corotating interaction region (CIR). Therefore, we accommodate both ICMEs and CIRs as their possible origin. This interpretation is probably applicable to the candidate aurorae in the often-cited Hungarian catalogue, on the basis of the reconstructed margin of their equatorward auroral boundary. Moreover, this catalogue itself has clarified that the considerable candidates during the MM were probably misinterpretations. Therefore, frequency of the auroral visibility in Hungary was probably lower than previously considered and agree more with the generally slow solar wind in the existing reconstructions, whereas sporadic occurrences of sunspots and coronal holes still caused occasional geomagnetic storms.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا