ﻻ يوجد ملخص باللغة العربية
We diagram the behavior of 5-dimensional anti-de Sitter spacetime against horizon formation in the gravitational collapse of a scalar field, treating the scalar field mass and width of initial data as free parameters, which we call the stability phase diagram. We find that the class of stable initial data becomes larger and shifts to smaller widths as the field mass increases. In addition to classifying initial data as stable or unstable, we identify two other classes based on nonperturbative behavior. The class of metastable initial data forms a horizon over longer time scales than suggested by the lowest order perturbation theory at computationally accessible amplitudes, and irregular initial data can exhibit non-monotonic and possibly chaotic behavior in the horizon formation times. Our results include evidence for chaotic behavior even in the collapse of a massless scalar field.
We provide a systematic and comprehensive derivation of the linearized dynamics of massive and partially massless spin-2 particles in a Schwarzschild (anti) de Sitter black hole background, in four and higher spacetime dimensions. In particular, we s
Maximally symmetric curved-brane solutions are studied in dilatonic braneworld models which realise the self-tuning of the effective four-dimensional cosmological constant. It is found that no vacua in which the brane has de Sitter or anti-de Sitter
Quantum Field Theories (QFTs) in Anti-de Sitter (AdS) spacetime are often strongly coupled when the radius of AdS is large, and few methods are available to study them. In this work, we develop a Hamiltonian truncation method to compute the energy sp
We demonstrate that possession of a single negative mode is not a sufficient criterion for an instanton to mediate exponential decay. For example, de Sitter space is generically stable against decay via the Coleman-De Luccia instanton. This is due to
We construct five dimensional black rings in global anti-de Sitter space using numerical methods. These rings satisfy the BPS bound $| J | < M ell$, but the angular velocity always violates the Hawking-Reall bound $| Omega_H ell | leq 1$, indicating