ﻻ يوجد ملخص باللغة العربية
We prove lower bounds on the complexity of finding $epsilon$-stationary points (points $x$ such that $| abla f(x)| le epsilon$) of smooth, high-dimensional, and potentially non-convex functions $f$. We consider oracle-based complexity measures, where an algorithm is given access to the value and all derivatives of $f$ at a query point $x$. We show that for any (potentially randomized) algorithm $mathsf{A}$, there exists a function $f$ with Lipschitz $p$th order derivatives such that $mathsf{A}$ requires at least $epsilon^{-(p+1)/p}$ queries to find an $epsilon$-stationary point. Our lower bounds are sharp to within constants, and they show that gradient descent, cubic-regularized Newtons method, and generalized $p$th order regularization are worst-case optimal within their natural function classes.
We establish lower bounds on the complexity of finding $epsilon$-stationary points of smooth, non-convex high-dimensional functions using first-order methods. We prove that deterministic first-order methods, even applied to arbitrarily smooth functio
The problem of finding near-stationary points in convex optimization has not been adequately studied yet, unlike other optimality measures such as minimizing function value. Even in the deterministic case, the optimal method (OGM-G, due to Kim and Fe
We provide the first non-asymptotic analysis for finding stationary points of nonsmooth, nonconvex functions. In particular, we study the class of Hadamard semi-differentiable functions, perhaps the largest class of nonsmooth functions for which the
We consider the problem of provably finding a stationary point of a smooth function to be minimized on the variety of bounded-rank matrices. While optimization on low-rank matrices has been extensively studied, existing algorithms do not provide such
We lower bound the complexity of finding $epsilon$-stationary points (with gradient norm at most $epsilon$) using stochastic first-order methods. In a well-studied model where algorithms access smooth, potentially non-convex functions through queries