ترغب بنشر مسار تعليمي؟ اضغط هنا

Discovery of a point-like source and a third spiral arm in the transition disk around the Herbig Ae star MWC 758

369   0   0.0 ( 0 )
 نشر من قبل Maddalena Reggiani
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Transition disks offer the extraordinary opportunity to look for newly born planets and investigate the early stages of planet formation. In this context we observed the Herbig A5 star MWC 758 with the L band vector vortex coronagraph installed in the near-infrared camera and spectrograph NIRC2 at the Keck II telescope, with the aim of unveiling the nature of the spiral structure by constraining the presence of planetary companions in the system. Our high-contrast imaging observations show a bright (delta L=7.0+/-0.3 mag) point-like emission, south of MWC 758 at a deprojected separation of about 20 au (r=0.111+/- 0. 004 arcsec) from the central star. We also recover the two spiral arms (south-east and north-west), already imaged by previous studies in polarized light, and discover a third one to the south-west of the star. No additional companions were detected in the system down to 5 Jupiter masses beyond 0.6 arcsec from the star. We propose that the bright L band emission could be caused by the presence of an embedded and accreting protoplanet, although the possibility of it being an asymmetric disk feature cannot be excluded. The spiral structure is probably not related to the protoplanet candidate, unless on an inclined and eccentric orbit, and it could be due to one (or more) yet undetected planetary companions at the edge of or outside the spiral pattern. Future observations and additional simulations will be needed to shed light on the true nature of the point-like source and its link with the spiral arms.

قيم البحث

اقرأ أيضاً

More than a dozen young stars host spiral arms in their surrounding protoplanetary disks. The excitation mechanisms of such arms are under debate. The two leading hypotheses -- companion-disk interaction and gravitational instability (GI) -- predict distinct motion for spirals. By imaging the MWC 758 spiral arm system at two epochs spanning ${sim}5$ yr using the SPHERE instrument on the Very Large Telescope (VLT), we test the two hypotheses for the first time. We find that the pattern speeds of the spirals are not consistent with the GI origin. Our measurements further evince the existence of a faint missing planet driving the disk arms. The average spiral pattern speed is $0.!^circ22pm0.!^circ03$ yr$^{-1}$, pointing to a driver at $172_{-14}^{+18}$ au around a $1.9$ $M_odot$ central star if it is on a circular orbit. In addition, we witness time varying shadowing effects on a global scale that are likely originated from an inner disk.
78 - A. Isella , E. Tatulli , A. Natta 2008
In this Letter we investigate the origin of the near-infrared emission of the Herbig Ae star MWC 758 on sub-astronomical unit (AU) scales using spectrally dispersed low resolution (R=35) AMBER/VLTI interferometric observations both in the H ($1.7 mu$ m) and K ($2.2 mu$m) bands. We find that the K band visibilities and closure phases are consistent with the presence of a dusty disk inner rim located at the dust evaporation distance (0.4 AU) while the bulk of the H band emission arises within 0.1 AU from the central star. Comparing the observational results with theoretical model predictions, we suggest that the H band emission is dominated by an hot gaseous accretion disk.
67 - Bo-Ting Shen 2020
Asymmetrical features in disks provide indirect evidences of embedded objects, such as planets. Observed with the Atacama Large Millimeter/submillimeter Array (ALMA), the circumstellar disk in MWC 758 traced with thermal dust continuum emission at wa velengths of 0.9 mm with an angular resolution up to 0.1 (15 au) exhibits an asymmetrical dust ring with additional features. In order to analyze the structures azimuthally and radially, we split the dust ring into small segments in azimuth. For each segment, we fit two-Gaussian functions to the radial intensity profile. The obtained best-fit parameters as a function of azimuth are analyzed. Three spiral-like arm structures are identified. When fitting the 0.9 mm features with the spiral density wave theory using the WKB approximation, two sets of disk aspect ratios are found: one solution gives relatively low values (~0.03) while the other solution is at the upper bound of the free parameter (~0.2). The planet locations suggested by the upper-bound result are similar to the ones determined by Benisty et al. (2015) for the NIR polarized intensity image. Comparing the reported spiral-like structures with the higher angular-resolution (0.04) ALMA image in Dong et al. (2018), we identify different structures in the West of the disk due to differences in the adopted analysis methods and the respective resolutions of the images.
110 - A. Raman 2005
We present Submillimeter Array observations of the Herbig Ae star HD169142 in 1.3 millimeter continuum emission and 12CO J=2-1 line emission at 1.5 arcsecond resolution that reveal a circumstellar disk. The continuum emission is centered on the star position and resolved, and provides a mass estimate of about 0.02 solar masses for the disk. The CO images show patterns in position and velocity that are well matched by a disk in Keplerian rotation with low inclination to the line-of-sight. We use radiative transfer calculations based on a flared, passive disk model to constrain the disk parameters by comparison to the spectral line emission. The derived disk radius is 235 AU, and the inclination is 13 degrees. The model also necessitates modest depletion of the CO molecules, similar to that found in Keplerian disks around T Tauri stars.
102 - Y. Boehler , L. Ricci , E. Weaver 2017
We present Atacama Large Millimeter Array (ALMA) observations at an angular resolution of 0.1-0.2 of the disk surrounding the young Herbig Ae star MWC 758. The data consist of images of the dust continuum emission recorded at 0.88 millimeter, as well as images of the 13CO and C18O J = 3-2 emission lines. The dust continuum emission is characterized by a large cavity of roughly 40 au in radius which might contain a mildly inner warped disk. The outer disk features two bright emission clumps at radii of about 47 and 82 au that present azimuthal extensions and form a double-ring structure. The comparison with radiative transfer models indicates that these two maxima of emission correspond to local increases in the dust surface density of about a factor 2.5 and 6.5 for the south and north clumps, respectively. The optically thick 13CO peak emission, which traces the temperature, and the dust continuum emission, which probes the disk midplane, additionally reveal two spirals previously detected in near-IR at the disk surface. The spirals seen in the dust continuum emission present, however, a slight shift of a few au towards larger radii and one of the spirals crosses the south dust clump. Finally, we present different scenarios in order to explain the complex structure of the disk.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا