ترغب بنشر مسار تعليمي؟ اضغط هنا

On the isomorphisms between evolution algebras of graphs and random walks

41   0   0.0 ( 0 )
 نشر من قبل Paula Cadavid
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Evolution algebras are non-associative algebras inspired from biological phenomena, with applications to or connections with different mathematical fields. There are two natural ways to define an evolution algebra associated to a given graph. While one takes into account only the adjacencies of the graph, the other includes probabilities related to the symmetric random walk on the same graph. In this work we state new properties related to the relation between these algebras, which is one of the open problems in the interplay between evolution algebras and graphs. On the one hand, we show that for any graph both algebras are strongly isotopic. On the other hand, we provide conditions under which these algebras are or are not isomorphic. For the case of finite non-singular graphs we provide a complete description of the problem, while for the case of finite singular graphs we state a conjecture supported by examples and partial results. The case of graphs with an infinite number of vertices is also discussed. As a sideline of our work, we revisit a result existing in the literature about the identification of the automorphism group of an evolution algebra, and we give an improved version of it.



قيم البحث

اقرأ أيضاً

370 - P. Ara , E. Pardo 2012
Hazrat gave a K-theoretic invariant for Leavitt path algebras as graded algebras. Hazrat conjectured that this invariant classifies Leavitt path algebras up to graded isomorphism, and proved the conjecture in some cases. In this paper, we prove that a weak version of the conjecture holds for all finite essential graphs.
In this paper we study subalgebras of complex finite dimensional evolution algebras. We obtain the classification of nilpotent evolution algebras whose any subalgebra is an evolution subalgebra with a basis which can be extended to a natural basis of algebra. Moreover, we formulate three conjectures related to description of such non-nilpotent algebras.
In recent years, protocols that are based on the properties of random walks on graphs have found many applications in communication and information networks, such as wireless networks, peer-to-peer networks and the Web. For wireless networks (and oth er networks), graphs are actually not the correct model of the communication; instead hyper-graphs better capture the communication over a wireless shared channel. Motivated by this example, we study in this paper random walks on hyper-graphs. First, we formalize the random walk process on hyper-graphs and generalize key notions from random walks on graphs. We then give the novel definition of radio cover time, namely, the expected time of a random walk to be heard (as opposed to visit) by all nodes. We then provide some basic bounds on the radio cover, in particular, we show that while on graphs the radio cover time is O(mn), in hyper-graphs it is O(mnr) where n, m and r are the number of nodes, the number of edges and the rank of the hyper-graph, respectively. In addition, we define radio hitting times and give a polynomial algorithm to compute them. We conclude the paper with results on specific hyper-graphs that model wireless networks in one and two dimensions.
The space of derivations of finite dimensional evolution algebras associated to graphs over a field with characteristic zero has been completely characterized in the literature. In this work we generalize that characterization by describing the deriv ations of this class of algebras for fields of any characteristic.
We study the space of derivations for some finite-dimensional evolution algebras, depending on the twin partition of an associated directed graph. For evolution algebras with a twin-free associated graph we prove that the space of derivations is zero . For the remaining families of evolution algebras we obtain sufficient conditions under which the study of such a space can be simplified. We accomplish this task by identifying the null entries of the respective derivation matrix. Our results suggest how strongly the associated graphs structure impacts in the characterization of derivations for a given evolution algebra. Therefore our approach constitutes an alternative to the recent developments in the research of this subject. As an illustration of the applicability of our results we provide some examples and we exhibit the classification of the derivations for non-degenerate irreducible $3$-dimensional evolution algebras.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا